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Introduction 
 
The Alberta Forest Biodiversity Monitoring Program (AFBMP) remote sensing pilot project, is aimed at 
developing protocols for monitoring forest biodiversity using multi-resolution remotely sensed data.  
Ultimately, the protocols for remote sensing will be integrated with protocols developed in parallel pilot 
projects for taxonomic groups and ecosystems representing the diversity of the province, i. e., mammals, 
birds, arthropods, terrestrial plants and bryophytes, and aquatic systems.  
 
This chapter is derived from a second report of the AFBMP remote sensing pilot study, providing an 
initial protocol for using high spatial resolution imagery (< 2 m per pixel) to monitor stands on the 
forested landscape.  It follows an earlier report on remote sensing protocols for forested regional 
landscape using low spatial resolution imagery (Chapter 8). 
 
Scale 
 

Biodiversity and Scale 
 
Biodiversity is multi-dimensional in character, involving multiple species and ecological processes that 
interact and proceed at multiple scales (Noss 1998).  According to hierarchy theory, temporal and spatial 
scales covary; longer processes tend to occur over larger spaces. Sampling biodiversity at more than one 
spatial scale allows a more complete understanding of simultaneously existing processes that operate on 
different time scales. In this context, the magnitude of the study (area and time) and the degree of detail 
collected can be adjusted purposefully to capture the level of biodiversity sought. 
 
In practice, tradeoffs exist between the level of detail and the amount of area that can be examined.  The 
level of detail that can be extracted in large areal units is generally smaller due to practical considerations, 
such as time, transportation, field crew expense, and analyzing samples.  For the same time and effort, 
greater detail can be collected from smaller areas, increasing the probability of detecting subtle changes in 
species composition or ecological processes. 
 
As pointed out in Chapter 8, measures of landscape pattern that are important biodiversity elements in 
their own right, are dependent on the areal extent that is tested.  Decisions remain outstanding regarding 
the size or sizes of area chosen for long-term biodiversity monitoring.  If detection and intensity of change 
is dependent on sample area, choosing the level of environmental change that signals consequential shifts 
in biodiversity is first required before the extent of the sample area can be decided. 
 

Remote Sensing and Resolution 
 
For studies using remotely sensed data, spatial scale has the same meaning as in ground-based studies; the 
areal extent of the investigation.  The level of spectral and spatial detail that can be collected remotely, 
however, is determined by the resolution capabilities of the sensor.  Therefore, information that can be 
derived from remotely sensed imagery, which includes land composition (type of patches) and pattern, 
will vary according to the sensor used.  See Chapter 7 for a more thorough discussion of resolution and 
remote sensing. 
 
By including information derived from multiple resolutions of remotely sensed data in a monitoring 
program, a broad measure of the multi-dimensionality of biodiversity will be obtained.  Besides 
enhancing measures of biodiversity, these dimensions will add to our general understanding of how the 
composition and pattern of the landscape at different spatial resolutions are related to one another.  For 
these reasons, a multi-resolution approach to biodiversity monitoring is recommended. 
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For low spatial resolution imagery such as satellite Landsat TM (30 m/pixel), usually more than one type 
of ground object occupies the space corresponding to a single pixel.  In this case, the sensor detects a 
mixture of spectral reflectance from underlying ground objects.  Each object’s spectral signature 
contributes to the pixel’s overall signature in proportion to its fraction on the ground.  Information 
extracted from low spatial resolution imagery is limited to broadly defined classes that often include more 
than one plant species, rock type, urban structure or other ground object form.  The pixel-based approach 
to classification is commonly used with low spatial resolution imagery, which assumes pixel 
independence and signatures based on normal distributions of pixel multispectral values. 
 
In contrast, for high spatial resolution imagery, a single ground object may correspond to more than one 
pixel.  In addition, pixels comprising a single ground feature may vary in spectral properties.  For 
example, different parts of a tree can vary in reflectance properties, depending on illumination conditions 
(sun or shade) and biochemical (photosynthetic) activity (leaf or bark).  Therefore, one important aspect 
of extracting information from high spatial resolution data is object identification and definition; that is, 
determining the set of contiguous pixels that belong to a certain ground feature. 
 
Biodiversity Elements 
 
Components of forest structure and composition provide a basis for habitat mapping, forest diversity 
indices (Lahde et al. 1999) and studies of ecological processes.  Forest structure refers to the vertical and 
horizontal organization of above ground plant matter, varying from uniform even-aged stands to irregular 
multiple-aged mixed stands.  For forestry and ecological applications, vegetation structure can be 
categorized as inventory information (tree stem counts, standing and fallen dead trees, charred wood, 
crown closure, canopy height, canopy and understory species composition) or as biophysical parameters 
(LAI, biomass, NPP) (Wulder 1999 says ’99 in references).  Some of these components are the types of 
biodiversity elements that can be monitored within a forest stand using medium and high spatial 
resolution remotely sensed data.  A list of recommended biodiversity elements for monitoring forest 
stands using medium and high spatial resolution data is given in Table 9.1. 
 

Table 9.1 Selected Biodiversity Elements – Medium and High Spatial Resolution Imagery 
 

Biodiversity Element Method 
Species Composition Object Detection and Classification 
Number of Trees Object Detection and Classification 
Canopy Roughness Classification and Texture 
Crown Closure Object Detection and Classification 
Vegetation Index Image Algebra 
Vegetation Stress Linear Models (Regression) 
Leaf Area Index Linear Models (Regression) 
Canopy Volume Linear Models (Regression) 
Patch (Gap) Metrics Metric and Spatial Algorithms 
 
A number of recent studies have addressed the effectiveness of high spatial resolution satellite and 
airborne imagery to determine various components of vegetation structure and composition.  A brief 
review of the remote sensing literature addresses selected biodiversity elements (Table 9.1).  Following 
the review, examples are provided that show graphic illustration of biodiversity elements extracted from 
medium and high spatial resolution airborne data using data collected from the AFBMP’s Foothills and 
Boreal Pilot Areas and from the Kananaskis Biological Field Station, University of Calgary. 
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Literature Review 
 

Species Classification 
 
A pixel-based approach to classifying high spatial resolution Digital Multispectral (DMS) images (25 cm 
x 32 cm pixel resolution) of a forested region in the foothills of Alberta was compared to ground-based 
class information (Gerylo et al. 1998).  Using pixels corresponding to sunlit tree crowns, spectral 
signatures of pure species were delineated as training sets for a maximum likelihood classifier.  For 
accuracy assessment, a tree crown mask was utilized, eliminating classification error from the understory.  
An average class accuracy of 84% resulted for lodgepole pine, white spruce and aspen; improving to 89% 
by combining the two conifer classes.  From 66% overall accuracy for the three tree species classes, the 
overall accuracy decreased significantly when more classes were included in the analysis (Gerylo et al. 
1998). 
 
Through empirical studies, texture derivatives of high spatial resolution (< 2 m/pixel) images by and large 
have shown improvements to canopy classification accuracy using pixel-based classifiers (Dikshit and 
Roy 1996; Franklin et al. 1999).  The incorporation of texture information improved discrimination 
between eight texture-based classes (water, fen reed, fen Phalaris, wet grass, wet grass (mowed or 
grazed), fen herbs, sallow scrub, and woodland) in an aerial image (1.25 m/pixel) taken near Cambridge, 
UK (Dikshit and Roy 1996).  Using Compact Airborne Spectrometric Imager (CASI) data with spatial 
resolutions less than 1 m/pixel, Franklin et al. (2000) found that homogeneity and entropy texture 
derivatives slightly improved pure and mixedwood forest class accuracy in Alberta (60% to 65%).  The 
same study showed that accuracy improved with texture derivatives by 12% for forest classes in New 
Brunswick (Franklin et al. 2000). 
 
However, pixel-based approach to classifying species has not proven to be highly effective using high-
resolution imagery (Gerylo et al. 1998).  Pixels within the same tree can end up being classified 
differently using a pixel-by-pixel method, complicating errors.  To avoid this problem, classifications can 
be performed using groups of pixels that represent individual trees or groups of trees. 
 
Brandtberg (1998) developed two methods for distinguishing tree species in Swedish forests (Picea abies, 
Pinus silvestris, and Betula spp.) based strictly on tree crown patterns.  By using filtered aerial infrared 
imagery (10 cm/pixel), a radial measure could discriminate undamaged spruce tree crowns and a contour 
measure of the crowns of pine and birch.  Spruce crowns are characterized by rows of brighter pixels 
radiating out from a central core, while the smooth contour of a birch crown is distinctive from the curved 
contour of a pine crown (Brandtberg 1998). 
 
In early work with high resolution Multidetector Electro-optical Imaging Scanner (MEIS) imagery (36 
cm/pixel), tree crowns were delineated by hand (Gougeon 1995a).  The spectral variability of sets of 
pixels within tree crowns was evaluated for use as signatures in classification: all pixels, sunlit pixels and 
shaded pixels.  For five conifer species (black spruce, white spruce, jack pine, red pine, and white pine) 
and 10 classifications schemes, the average mean species classification accuracy ranged between 48.1% 
and 88.9%, with sunlit signatures performing the worst (Gougeon 1995a).  Automated methods for 
delineating tree crowns are advancing (Gougeon 1995b; Gougeon et al. 1998) with application for 
estimating tree number, crown closure, etc. (see below), as well as classification.  The individual tree 
crown (ITC) method of classification depends on highlighting the shaded areas among crowns on the 
image, delineating trees and clusters of trees (Gougeon et al. 1998).  A supervised approach is taken using 
training sets from delineated tree crowns to gather spectral signatures of pure species.  Maximum 
likelihood decision rules then place unknown ITC into species groups. 
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To classify high resolution (2 m/pixel), multi-spectral DMSV imagery, Preston et al. (1998) utilized a tree 
identification and delineation algorithm (TIDA) to search for distinct spectral patterns in a scene of 
Australian forest.  Maximally and minimally bright pixels were used to identify crown centroids and 
boundaries on the imagery.  This information was combined with environmental and field data for 
decision tree modeling and classification with intelligent algorithms.  Compared to manual interpretation, 
the automated procedures were 20% more reliable overall (28% for species; 21% for size and density, 
20% for tree development index, and 8% for height) (Preston et al. 1998). 
 
In contrast to the methods above, an approach that does not delineate trees was tested for classifying 
species of deciduous trees.  Images taken on ten separate occasions during a single year, documented 
phenological differences that proved to be useful for discriminating four deciduous tree species within an 
Appalachian mixed hardwood site (Key et al. 1998).  Different combinations of spectral bands taken from 
the ten multi-date images were classified and compared for classification accuracy using a maximum 
likelihood classification algorithm.  The authors concluded that the classification accuracy of the different 
band combinations depended on the species and on temporal and phenological resolution (Key et al. 
1998). 
 

Number of Trees 
 
Four fundamental techniques have been developed and/or combined for estimating the number of trees 
per stand (stem density): 1) local maxima; 2) valley following; 3) template matching; and 4) edge 
contours at multiple scales. 
 
The local maxima approach identifies and flags the brightest pixels among clusters of pixels within an 
image, corresponding to the reflectance off the highest point of the tree crown.  For a conifer with a 
conical canopy, often only one highest point exists; for a deciduous tree with a spreading canopy, more 
than one brightest point may occur.  By counting the number of flagged pixels, the number of trees within 
an image can be estimated.  Similar to manual interpretation, 55% of the true number of conifer stems 
was estimated in different densities of even-aged Norway spruce stands by determining the maxima value 
above the mode of a smooth aerial photo (15 cm/pixel) (Dralle and Rudemo 1996).  For determining the 
maxima by kernel smoothing, the band width of the imagery was found to be an important parameter.  
Later, Dralle and Rudemo (1997) extended an analysis of their study area, modifying the amount of image 
smoothing and comparing stem count estimates to ground counts.  For estimating tree position from 
imagery, the authors showed reasonable results, 85%-95% of the trees are found with a RMSE of 65 cm 
(Dralle and Rudemo 1997).  Using panchromatic orthophotos (1 m/pixel) of a conifer forest, the highest 
reflectance values were identified within the image via a moving window (Niemann et al. 1998). For tree 
top identification, the local maxima method corresponded by 70% to 85% to manual photo-interpretation 
(Niemann et al. 1998).  The local maxima method is more successful at detecting individual trees in dense 
conifer stands where every tree is surrounded by shade, compared to thin stands where understory can 
cause false positives (Gougeon1997).  For this reason, the local maxima algorithm was modified to 
account for the presence of a specific shadow for every tree with encouraging results (Gougeon 1997).  
Eldridge and Edwards (1993) estimated the number of stems/ha using MEIS-II (40 cm/pixel) imagery and 
a peak finding algorithm (local maxima filter).  Extending the work of Eldridge and Edwards (1993), their 
algorithm was modified to identify individual stems in a mixed-species boreal forest using three scales of 
aerial color photos (Bolduc et al. 1999).  Utilizing 3 x 3 and 5 x 5 pixel size windows, individual trees 
were better distinguished in the 1:10,000 photos than in the 1:5,000 or 1:20,000 photos.  The authors 
suggested that the 1:5,000 photos were more difficult to interpret because more than one pixel could have 
the highest reflectance in a tree and because greater light diffusion at a higher spatial resolution could 
cause problems identifying tree apices (Bolduc et al. 1999). 
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The valley following method singles out individual trees by following and outlining the digital minima 
(valleys) on high spatial resolution imagery that correspond to shadows found between tree crowns.  The 
first step of Gougeon’s (1995b) automatic method for delineating tree crowns is to outline the dark pixel 
valleys, partially separating the background vegetation from the tree crowns.  These initial valleys are 
subsequently masked out.  A rule-based method is then applied that more precisely separates the trees and 
background vegetation.  Crown boundaries are traced by moving pixel by pixel in a clock-wise direction 
around remaining local minima until the perimeter of the crown is closed.  Using MEIS-II imagery (31 
cm/pixel) of a conifer plantation, automated crown counts were within 7.7% of ground counts, while 
crown counts by human interpreters were within 8.5% to 18.1% of ground counts (Gougeon 1995b).  At 
lower spatial resolutions, the valley following method is not as effective in separating individual trees, 
being more likely to isolate tree clusters (Gougeon 1998).  Problems associated with this method include 
difficulties distinguishing individual trees among stands of small trees, thin stands, shaded stands, and 
stands of variable size (Gougeon 1998).  Other weaknesses include the assumption that crowns are 
relatively round and the difficulty obtaining high crown area accuracies, especially at off-nadir angles.  
However, crown contour, texture, and structural information can be obtained reliably with this method 
(Gougeon 1998). 
 
The template matching method involves the creation of image patterns from 3-dimensional models.  The 
model variables include tree shape, tree height, spatial relationships of trees within a stand, background, 
camera angle and light condition.  The modeled image patterns are applied to automatically recognize 
similar patterns in remotely sensed imagery, allowing the location of individual tree crowns to be 
predicted.  Different templates for different positions within the stand may be necessary for off-nadir 
imagery (Larsen 1998).  A template matching procedure was used to recognize individual trees in MEIS-
II (36 cm/pixel) imagery of mixedwood stands in Ontario and CASI (60 cm/pixel) imagery of coniferous 
and aspen stands in Alberta (Pollack 1998).  For the Ontario scene, when the actual location of an 
individual tree was not of concern, the template matching error was close to that of manual interpretation 
(10% and 11%, respectively).  For correct spatial location, however, the template matching error rate 
(38%) was significantly higher than manual interpretation (14%) (Pollack 1998).  Using the Alberta 
imagery, the template matching procedure was not as successful at recognizing distinct trees; however, 
entire tree crowns were recognized when the method succeeded.  The poorer results of discriminating 
individual trees with the CASI compared to the MEIS-II imagery was partially attributed to the lower 
spatial resolution of the CASI imagery and to the tight grouping of trees in the Alberta forest (Pollack 
1998).  Experimenting with size, shape and placement of the match window, the template matching 
approach was further evaluated using geometric-optical models of scanned aerial photos of spruce trees 
(15 cm/pixel) (Larsen 1998).  The optimal match window resulted in 91%-98% of trees delineated by 
manual interpretation being recovered and a standard error for tree top position of 25 cm-30 cm (Larsen 
1998). 
 
The edge contour at multiple scale method for estimating tree crown extent was tested using scanned 
aerial color infrared photographs (10 cm/pixel) of pure and mixed stands (pine, spruce, birch and aspen) 
in Sweden (Brandtberg and Walter 1998).  The image first was smoothed to round off contour corners and 
to merge nearby parts of contours using a predetermined effective scale.  Using a number of algorithms 
based on geometric relationships, contour edges were identified and a primal sketch of crowns was 
produced.  From this primal sketch, seed points were established for growing tree crown segments.  
Compared to human interpretation, this method ignored a number of small tree crowns, but captured some 
tree crowns that were missed by visual interpretation.  Although one to one correspondence was 66.5%, 
the edge contour at multiple scale algorithm resulted in almost equivalent tree crown delineation overall, 
as did manual interpretation (Brandtberg and Walter 1998). 
 

Crown Closure 
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Textures derived from semivariogram measures taken in three directions using MEIS-II high resolution 
airborne imagery were used to establish limits of forest stands (St. Onge and Cavayas 1997).  Stepwise 
regression determined the relationship between semivariogram ranges and crown diameter, stand density 
and crown closure, yielding R2 values of 0.93, 0.86 and 0.89 respectively.  A region growing algorithm 
was applied to the imagery based on stepwise regression equations in order to delineate stand boundaries 
(St. Onge and Cavayas 1997). 
 
Spatial feature extraction techniques and a hierarchical per-pixel approach were compared with ground 
estimates for stand delineation, species composition and crown closure estimates (Gerylo et al. 1998).  
Using high resolution digital CCD (charged couple device) imagery (32 cm x 25 cm pixel size) of pine, 
spruce and aspen dominated forests in Alberta, stand estimates from the field more closely matched those 
using the spatial feature extraction methods than using the per-pixel method (Gerylo et al. 1998). 
 

Leaf Area Index (LAI) 
 
Leaf Area Index (LAI) is a measure of the area of leaf per unit area of ground, which is a measure of 
vegetative biomass.  Along with other variables such as cover type, climate, soils, and topography, LAI 
inputs into ecosystem models of net primary productivity (NPP) such as BIOME-BGC (Running and 
Hunt 1993).  Monitoring the actual NPP as a forest biodiversity element permits subtle changes in forest 
health or successional stage to be detected and evaluated. 
 
Direct measures of LAI are time consuming and require destructive sampling.  Using remotely sensed 
data, LAI has been found to correlate with vegetation indices, such as NDVI when the understory does 
not dominate (Spanner et al. 1984; Running et al. 1986).  NDVI = (near-infrared reflectance – red 
reflectance)/(near-infrared reflectance + red reflectance).  The relationship between LAI and NDVI is not 
simple, depending on species, leaf morphology, tree structure, plant health, and other factors.  Values of 
NDVI range between –1 and +1, higher values indicate greater amounts of vegetation when other 
contributing factors are held constant.  Also correlated with LAI, the red edge reflection point (REP) is 
the point of maximum slope between the boundary of chlorophyll absorption in the red wavelengths and 
the within leaf scattering in the near-infrared wavelengths (Lucas et al. 2000). The relationship between 
LAI and NDVI or REP is dependent, however, on forest structure and species.  For example, regression 
coefficients between field measured LAI and TM-derived NDVI were 0.93 for softwood plots, 0.13 for 
hardwood plots and 0.66 for mixedwood plots in the Fundy Model Forest of New Brunswick (Franklin et 
al. 1997). 
 
Besides leaf area index, vegetation biomass, productivity, photosynthetic activity and chlorophyll content 
can be estimated from the reflectance of the red edge.  Models using CASI data (60 cm pixel) of Douglas 
fir stands were built that effectively distinguished areas with high and low LAI, volume and other 
indicators of biomass (Magnussen and Boudewyn 1998). 
 

Forest Volume 
 
Forest volume is the amount of wood within the forest, a more useful measure to foresters when estimated 
per stand rather than in larger units.  Stand volume is related to stems/ha and tree diameter, which is 
related to tree height.  Aerial photo interpretation has been used traditionally to estimate tree size directly 
or to estimate heights and tree proximity.  Due to cost and time considerations of photo interpretation, 
automated approaches to forest volume estimation are welcome contributions that benefit stand level 
biodiversity monitoring efforts. 
 
Expanding on the work of Eldridge and Edwards (1993), Bolduc et. al (1999) combined ancillary 
information with stand density estimates obtained from MEIS-II (40 cm/pixel) images in order to estimate 
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volume of a mixed hardwood-softwood forest in Quebec.  In addition to using a 3 x 3 window to identify 
individual trees (Eldridge and Edwards 1993), the local maxima filter was applied using a 5 x 5 window.  
A 5 x 5 window was used to reduce the chance of a single tree being identified as more than one by 
having multiple maximally bright pixels.  Using this method, a map of the number of trees/ha.was 
achieved.  Maps of tree height were also obtained in two manners: 1) as photo-interpreted height classes 
and 2) as heights derived from ground data.  Using regression analysis, the relationship between volume 
and tree height was established.  Then, regression analysis was employed to establish the relationship 
between tree height, stand density and volume.  82% of the variation in volume could be attributed to the 
stand density as measured by local maximally bright pixels.  Including tree height, as well as stand 
density, 86% of the stand volume was explained (Bolduc et. al 1999). 
 

Vegetation Stress 
 
The absorption efficiency of chlorophyll decreases in stressed vegetation (increasing red reflectance), 
while the infrared reflectance decreases due to changes in the cell structure of the leaf.  In stressed 
vegetation, change in near-infrared reflectance of leaves is often detectable before changes in the visible 
spectrum become apparent.  Remote sensing is a useful tool for detecting vegetation stress caused by 
conditions as varied as disease, insect damage and drought. 
 
Chlorosis, a visual yellowing of the leaf, occurs as the concentration of chlorophyll decreases, leaving 
yellow pigments to predominate in reflectance.  The YI (yellowness index) quantifies leaf yellowness as 
the “center divided difference finite approximation of the second derivative of the reflectance spectrum” 
(Adams et al. 1999). 
 
The intensity and extent of fungal tomentosus root rot (Inonotus tomentosus) symptoms within a spruce 
forest near Prince George, British Columbia was determined using CASI imagery (60 cm/pixel) (Reich 
and Price 1998).  Conifer pixels were identified in the imagery by their green spectrum reflectance 
properties.  Using the valley following approach of Gougeon (1995b), individual tree crowns were 
isolated.  The red and near-infrared spectral characteristics of the individual tree crowns were categorized 
into four health classes.  Using the average spectral signature of pixels within a tree crown, maximum 
likelihood classification successfully detected stress at the level of individual trees (Reich and Price 
1998).  High resolution CASI imagery (60 cm/pixel) was also used to assess tree infection by the fungal 
root pathogen Phellinus weirii (Laminated root rot) on the east coast of Vancouver Island, British 
Columbia (Leckie et al. 1998).  Reduced growth, needle chlorosis, needle loss, smallish cones and 
mortality are symptoms of this disease.  Using similar methods as Reich and Price (1998) above, mean 
values of pixels from individually isolated tree crowns were calculated and corrected to the mean value at 
nadir.  Mean values for each band and several band ratios were plotted against field measures of needle 
loss and crown health class.  Using a selected set of bands and band ratios, a classification accuracy of 
77% overall by individual tree and 88% by class average resulted for the crown health classes.  Moderate 
and severe symptoms had good detection, while light symptoms were more problematic.  A number of 
trees were identified with no detectable symptoms on the ground (false positives) (Leckie et al. 1998). 
 
Discriminate analysis and classification of high spatial resolution imagery has also been used to assess 
and map insect defoliation of forest trees (Ahern et al. 1991; Franklin et al. 1995a, b; Leckie et al. 1992; 
Yuan et al. 1991).  In a western Newfoundland balsam fir (Abies balsamea) stand, the discrimination of 
severity classes of balsam woolly adelgid (Adelges piceae) infestation was evaluated using CASI 
panchromatic (25 cm/pixel) and multispectral (0.5 m and 1.0 m/pixel) imagery (Franklin et al. 1995a).  
From a 200 m x 100 m sample plot, 159 of 420 trees were ranked into balsam woolly adelgid damage 
classes, using damage class schemes of 3, 6 and 7.  Based on discriminate analysis of the multispectral 
image bands and texture derivatives, a 40% -70% accuracy was revealed in discriminating adelgid 
damage classes, depending on the number of damage classes and remote sensing variables.  The highest 
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percent accuracy of class discrimination occurred using the fewest number of classes and a single pixel 
per tree extraction method of six spectral bands (Franklin et al. 1995a).  Linear discriminate analysis 
tested the capability of aerial videographic data (1 m and 2 m/pixel) to separate defoliation levels, caused 
by western spruce budworm (Choristoneura occidentalis) in a mixed conifer subalpine forest in western 
Oregon (Franklin et al. 1995b).   A strong relationship between leaf area estimates derived from field-
based PAR readings and field-based percent defoliation estimates resulted from multiple regression 
analysis (R2 = 0.839).  However, multiple regression analysis showed little and weak relationships 
between the field estimates of percentage defoliation and the 1 m/pixel (R2 = 0.150) and 2 m/pixel (R2 = 
0.339) imagery. The discrimination of defoliation classes for the 1 m/pixel videography was 68% accurate 
and 60% accurate for the 2 m/pixel imagery, improving to 78% and 68% accuracy respectively by 
including texture derivatives (Franklin et al. 1995b). 
 

Change Detection 
 
For detecting change with multi-date high spatial resolution imagery, similar problems as those associated 
with low spatial resolution imagery must be addressed.  These include project definition, development of 
product specifications, data requirement analysis, determination of data availability, calculation of data 
acquisition costs, and data analysis cost estimates (Lunetta 1999).  Normalizing for geometric, temporal, 
and atmospheric consistency among images is particularly important for high spatial resolution data, as 
small shifts in location, time or environmental conditions can cause a false detection of change. 
 
The authors are not aware of change detection methods designed specifically for high-resolution data.  
Post classification comparison, classification of combined multi-date data sets, image algebra, and change 
vector analysis are appropriate methods for change detection for remotely sensed digital data of any 
resolution.  Chen et al. (1999) analyzed derivative-based green vegetation index (DGVI) values from two 
seasons of AVRIS images in an arid region of California using image subtraction.  Differences among 
herbaceous and shrub species in the amount of change between seasons were quantified (Chen et al. 
1999).  Although change detection methods are similar to those of low spatial resolution data, high spatial 
resolution data may differ in the purpose, areal extent, and frequency of monitoring change.  High spatial 
resolution data may be more appropriate for detecting subtle changes in physiological processes, rather 
than coarser scale landscape fragmentation and human disturbance.  Graphs denoting measures of 
processes over time may be useful for presenting these types of change, rather than representation in map 
form or as charts of landscape metrics. 
 
AFBMP Pilot Study Examples 
 
The purpose of the study examples is to illustrate the types of biodiversity elements that can be extracted 
from medium and high-resolution imagery. 
 

Study Areas 
 
The AFBMP’s pilot study areas represent two of the natural regions of Alberta that are heavily forested: 
the Foothills and Boreal Natural Regions.  In addition, the Kananaskis study area represents another more 
southerly, forested region of Alberta (Figure 9.1). 
 

Foothills Pilot Area 
 
The Foothills Pilot Area is located just south of Hinton, Alberta, centered near 530 15’ N, 1170 30’ E 
(Figure 9.1).  At the eastern edge of the Rocky Mountains, the landscape of this pilot area is part of the 
Upper Foothills Sub-Region of Alberta.  The dominant forests of the sub-region are coniferous, composed 
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of black spruce (Picea mariana), white spruce (Picea glauca), subalpine fir (Abies lasiocarpa) and 
lodgepole pine (Pinus contorta) stands.  Deciduous trees include balsam poplar (Populus balsamifera), 
aspen poplar (Populus tremuloides) and willow (Salix spp.). 
 

Boreal Pilot Area 
 
The Boreal Pilot Area is located approximately 35 km west and 15 km north of Lac La Biche, Alberta, 
centered near 540 50’ N, 1110 25’ E (Figure 9.1).  The vegetation, climatic and soil conditions of this pilot 
area are characteristic of the Central Mixedwood Sub-Region of Alberta.  The surface features are 
generally flat to modulating with low relief.  Aspen poplar (Populus tremuloides), balsam poplar 
(Populus balsamifera) and white birch (Betula papyrifera) are succeeded by white spruce (Picea glauca) 
and balsam fir (Abies balsamea).  Frequent fires play a major role in the region, eliminating older conifer 
stands. 
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Figure 9.1 Study Site Locations 

 
 
 
 

Kananaskis Study Area 
 
The Kananaskis Study Area is located within the Kananaskis Valley to the west of Calgary, Alberta.  
Within a transition zone from mountain to foothills, the vegetation is characteristic of the Sub-alpine and 
Upper Foothills Sub-Regions of Alberta.  Major tree species include lodgepole pine (Pinus contorta), 
white spruce (Picea glauca), Douglas fir (Pseudotsuga menziesii) and aspen poplar (Populus 
tremuloides).  Understory contains beaked willow (Salix bebbiana), bearberry (Arctostaphylos rubra), 
creeping juniper (Juniperus communis), and wild rose (Rosa acicularis). 
 

Data 
 

Imagery 
 
Foothills – High spatial resolution imagery was acquired on 4 August 1999 between 15:15 and 16:30 
GMT using the commercial CASI.  The mission was flown by Itres Research Ltd. in two straight flight 
lines (32 km and 31 km in length) designed to capture images from the three pilot sites (LPY, LPM, and 
MIX) and several National Forest Inventory (NFI) points.  The first pass at an altitude of about 9,000 feet 
ASL captured 2 m/pixel imagery and the second pass at about 5,600 feet captured 60 cm/pixel imagery.  
The spectral resolutions for the imagery are given in Table 9.2.  Bands were selected so as to simulate the 
band widths of satellite Landsat TM and to match previous CASI imagery collected in the Kananaskis 
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region (see below).  The sensor caught a continuous stream of imagery above the flight lines, 63 km in 
total, providing ample data for future analyses. 
 
Boreal – Immediately after completing the Foothills mission, the Beechcraft B80 QueenAir aircraft 
operated by Itres Research Ltd. flew northeast to the Boreal Study Area.  In a similar fashion, two straight 
flight lines were designed to collect 2 m (at about 7,100 feet ASL) and 60 cm (3,600 feet ASL) imagery 
of three pilot sites (CON, DEC, MUS) (Figure 9.3) as well as NFI points.  The CASI imagery of the 
Boreal area was obtained approximately between 20:35 and 22:00 GMT on 4 August 1999.  The total 
length of imagery of the Boreal study area is 73 km (30 + 43). 
 
 

Table 9.2 Spectral Resolution Casi Data – Foothills and Boreal Study Areas 

 
60 cm CASI 2 m CASI 

Band Wavelength (nm) Band Wavelength (nm) Band Wavelength (nm) 
1 449.4 to 500.2 1 427.1 to 449.8 10 714.0 to 729.6 
2 539.3 to 560.3 2 449.4 to 498.3 11 729.3 to 754.5 
3 609.2 to 639.9 3 498.0 to 519.0 12 754.2 to 789.1 
4 639.6 to 679.9 4 518.6 to 539.6 13 788.8 to 810.3 
5 689.1 to 716.2 5 539.3 to 558.5 14 810.0 to 829.6 
6 729.3 to 754.5 6 558.1 to 590.6 15 829.3 to 850.8 
7 790.7 to 810.3 7 609.2 to 639.9 16 850.5 to 857.9 
  8 639.6 to 679.9 17 875.7 to 889.5 
  9 689.1 to 714.2 18 900.9 to 959.4 

 
 
Itres Research Ltd. provided digital data with standard radiometric calibration and georeferencing in 1.6 
Gb or smaller files in exabyte format.  The imagery was transferred from exabyte format to PC format 
using facilities in the Faculty of Environmental Design, University of Calgary before storing as .pix files 
(PCI file format) on standard CDs. 
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Figure 9.2 CASI Imagery (2m and 60 cm) with Field Measures - AFBMP Foothills Pilot Sites 
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Figure 9.3 CASI Imagery (2m and 60 cm) with Field Measures - AFBMP Boreal Pilot 

A. 
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Different spectral characteristics are captured at different spatial resolutions.  At higher spatial 
resolutions, the sensor is able to record fewer spectral bands than at lower spatial resolutions.  By 
collecting both 60 cm and 2 m spatial resolution data, the greater spatial detail of the 60 cm data 
is enhanced with the greater spectral detail of the 2 m data.  By having both types of data, 
classifications can be improved. 
 
In order to measure spectral intensity from images of areas nearly equal size on the ground, an 11 
x 11 pixel window was sampled for the 60 cm and a 3 x 3 pixel window for the 2 m data.  Figures 
2 and 3 illustrate spectral intensity curves for 60 cm and 2 m data taken from each AFBMP pilot 
site.  As can be seen in these figures, the total bandwidth of the 2 m imagery is greater than for 
the 60 cm (Table 9.2).  In the case of the Foothills pilot site, the intensity curves are higher for the 
60 cm than for the 2 m data (Figure 9.2), while for the Boreal pilot sites the curves are lower for 
the 60 cm data (Figure 9.3).  However, greater spectral detail is reflected in the higher variability 
of the 2 m intensity curves because there are more bands. 
 
Kananaskis – Itres Research Ltd. Conducted a CASI mission that captured imagery over the 
study area on 18 July 1998 between 11 AM and 2 PM (Figure 9.1).  The timing of the mission 
was planned to correspond to maximum leaf-on, clear atmospheric conditions and optimum light 
conditions.  The seven spectral bands for 60 cm data and the 18 spectral bands for 1 m and 2 m 
data were chosen so that they could be combined into the same band intervals as Landsat TM 
bands. 
 

Field Data 
 
Foothills – The AFBMP’s vegetation pilot study group (Alberta Research Council (ARC), 
Vegreville) provided data for three pilot sites in the Foothills: LPY (lodgepole young); LPM 
(lodgepole mature); and MIX (mixedwood).  Circular sample plots and transect lines were 
measured within each pilot site.  The nested circular (6 and 10 m diam) plots were located in the 
center and on each of the four sides of a 100 m x 100 m plot, oriented with two sides facing north.  
Transects of 100 m in length were laid out in a north-south direction at the center and on either 
side parallel and 25 m from the center transect.  From the 6 m diam plots, trees less than 7 cm 
DBH were measured for species and DBH.  From the 10 m diam plots, the same measures were 
taken for trees greater than 7 cm DBH.  Taken along transect lines were large tree and snag data 
including species, dead or living condition, DBH, and decay index.  In addition, six trees from 
each pilot site were selected to represent the dominant canopy height.  For these six trees, the 
species, canopy height, tree age, and DBH were recorded (Figure 9.2).  GPS readings were taken 
at the centers and corners of the 100 m x 100 m pilot plots. 
 
Boreal – For the Boreal study area, vegetation data were collected by ARC using the same plot 
design and methods as used for the Foothills.  The three pilot sites of the Boreal study area are 
CON (conifer), DEC (deciduous), and MUS (muskeg) (Figure 9.3). 
 
Kananaskis – Using standardized methods, field measures in the Kananaskis field study area 
were contributed by a number of investigators and institutions (University of Calgary, University 
of Lethbridge, Canadian Forest Service and ARC). More complete field methods used in 
Kananaskis are described in Moskal (1999).  10 m x 10 m plots were sampled along transects that 
crossed through conifer and deciduous (pure and mixed) stands.  Tree species, tree height and 
height to canopy, tree diameter at breast height, and crown diameter were measured for each tree 
within the plots.  For each plot, other measures taken included slope, aspect, GPS readings, stem 
plots and crown closure estimates.  These measurements provide the basis for determining 
Alberta Vegetation Inventory (AVI) labels for each plot. 
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Analyses 

 
For the following examples, image enhancements and classifications were performed using the 
image analytic software PCI.  Statistical analyses were performed using SPSS and Excel. 
 

Example 1 - Number of Trees 
 
Using three stand types (deciduous, coniferous, and mixed woods) taken from separate areas 
within the1998 Kananaskis 60 cm CASI imagery, pixels representing shadows and understory 
were first identified by a pixel by pixel supervised classification and then extracted (masked out) 
from further analysis.  For the remaining pixels representing tree crowns, a local maxima 
technique was employed to identify brightest pixels within the crown, under the assumption that 
these brightest pixels represent tree apices.  Locally brightest pixels are highlighted after the 
shadow and understory are removed (Figure 9.4).  For the coniferous stand, the tree apices 
(locally brightest pixels) were simply counted.  In this example, a count of seventy conifer apices 
within a 100 x 100 pixel block results (stand density = 116.7 trees/ ha) (Figure 9.4). 
 
For the deciduous stand with broader tree canopies, the method was modified to compensate for 
more than one apex occurring per tree, based on estimated crown diameter.  One count is tallied 
for all identified apices within a given area, which is determined by the average crown diameter 
within the stand.  For this example, the decision rule was to count as one apex, all brightest pixels 
within a 5 x 5 pixel area (3 m x 3 m).  Using this decision rule within a 33 x 33 pixel sub-image 
of deciduous trees, the number of apices counted is 23, or 352 trees/ha (Figure 9.4). 
 
Two separate paths were taken for counting trees in the mixed wood sub-image.  Pixels classified 
as conifer apices were counted directly, whereas the pixels classified as deciduous apices within a 
5 x 5 pixel area were counted as one apex.  In this example, pixels classified as conifer are green, 
while those classified as deciduous are blue (Figure 9.4).  This approach results in 10 conifer and 
seven deciduous apices being enumerated within a 52 x 52 pixel block of the mixed wood sub-
image.  The stand density is 43.1 coniferous and 61.6 deciduous trees/ha (Figure 9.4). 
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Figure 9.4 Tree Counts from CASI Imagery (60 cm): Kananaskis Study Area 
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Example 2 – Crown Closure  

Crown closure estimates obtained from the high spatial resolution CASI imagery are compared to 
field estimates of crown closure in the Kananaskis study area.  Field measures of crown closure 
were collected using a spherical crown mirror densiometer.  In addition, percent crown closure 
from AVI determinations using classified CASI imagery are compared to those obtained in the 
field.  AVI crown closures in the field are based on the basal area of the dominant species per 
canopy cover, measured in 10% units. 
 
For one sub-scene of the1998 CASI imagery (60 cm), two approaches were used to extract crown 
closure estimates: 1) Laplacian filter; and 2) supervised classification. The Laplacian is a second 
derivative, edge enhancement filter.  When the Laplacian filtered is passed over forest stand 
imagery, high contrast regions between tree crowns and shadows (and understory) are 
emphasized.  Based on the brightness values of the resulting Laplacian image, pixels are 
separated into two classes, crown and other.  The percentage of pixels in the crown class is then 
calculated.  In the Kananaskis example, crown closure estimates based on the Laplacian filter 
method (61%) and classification (55%) are close to those obtained from field estimates (57%) 
(Figure 9.5). 
 

Figure 9.5 Crown Closure - Laplacian Filter  CASI Imagery (60 cm) - Kananaskis Study 
Area 
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Crown Closure = 61% 
 

White = Crowns 
Black = Other 

Crown Closure = 55% 
 

White = Unclassified 
Red = Deciduous 

Green = Coniferous 
Black = Shadow 

For other areas in the Kananaskis study area, crown closure estimates and AVI information 
extracted from classified CASI imagery are compared to those obtained in the field (Figure 9.6).  
Six sub-scenes were chosen for this example that vary in percent species composition.  AVI 
abbreviations used in this example are given in Table 9.3. 
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Table 9.3 SELECTED AVI TREE SPECIES LABELS 

Common Name Latin Name AVI Label 
White Spruce  Picea glauca Sw 
Black Spruce  Picea mariana Sb 

Lodgepole Pine  Pinus contorta Pl 
Trembling Aspen Populus tremuloides Aw 
Larch, Tamarack Larix laricina Lt 

 
No more than a 10% difference in species cover occurs between the field calls of AVI and the 
AVI determined from classification (Figure 9.6).  For example, for the plot illustrated by Figure 
9.6a, the field call for AVI was Pl10 (100% Lodgepole Pine) and the classification for AVI was 
Pl9AW1 (90% Lodgepole Pine, 10% Trembling Aspen). 
 
The difference between the field and classification estimates of crown closure range from 2% to 
6%, with the classification estimates always higher (Figure 9.6). In Figure 9.5, for example, 
crown closure was estimated as 55% in the field and 61% from the classified image.  One factor 
that may contribute to differences between the image and field estimates of both the AVI and 
crown closure is that the areal extent of the imagery is larger than the field plots.  
 

Example 3 - Vegetation Stress – Aspen Defoliation 

Pure and mixed aspen (Populus tremuloides) stands, as well as conifer, comprise the forest of the 
Kananaskis study area. Various levels of leaf defoliation were observed among aspen stands near 
Barrier Lake during the 1998 Kananaskis field season (Moskal 1999) that provide an example of 
natural vegetation stress in an Alberta forest. The cause of the leaf defoliation in these aspen 
stands was identified as Bruce spanworm (Operophtera bruceata). Bruce spanworm overwinters 
as eggs in the bark or in moss on the ground near the tree. The spanworm larvae emerge from the 
eggs to feed on leaf material within the bud or on early leaves expanding in the spring (Peterson 
and Peterson 1992). Perforated or severely reduced leaves result as larvae chew into the bud or 
emerging foliage.  The amount of leaf biomass and levels of stress of the affected aspen are 
ultimately determined by the level of insect infestation. Aspen stands were identified in 
Kananaskis with low, moderate and high levels of aspen defoliation and their spectral curves 
compared.  From high spatial resolution CASI imagery (60 cm/pixel), the spectral reflectance 
curves of defoliated aspen can be seen to differ from that of healthy aspen; defoliated trees have 
lower near-infrared and higher green and red reflectance than do healthy aspen (Figure 9.7).  
These differences are great enough to be observable in false color CASI imagery that display 
these aspen stands with three different levels of defoliation (Figure 9.7).  These differences are 
partially due to the lower photosynthetic activity and water content that is found in stands with 
lower leaf biomass than in those with higher biomass.  In addition, reflectance from the 
understory and non-leafy parts of the tree (stem and bark) can filter through the perforated leaves, 
contributing more to spectral signatures of stands with high levels of defoliation.  
 

Figure 9.6  Crown Closure and AVI Estimates: Field and Classification - CASI Imagery (60 
cm) Kananaskis Study Area 
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Figure 9.7 Aspen Defoliation: Low, Medium, High - CASI Imagery (60 cm) Kananaskis 
Study Area 
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Example 4 – Canopy Roughness and Image Texture  

Canopy roughness refers to the variation in vertical structure of the canopy.  A stand with a large 
variance in tree height has a rougher upper canopy than a stand with a small variance in tree 
height (Figure 9.8).  Young, even-aged stands of pure species tend to have smoother upper 
canopies than mixed-aged mixedwood stands. Larger shadows of trees are cast in stands of 
uneven height than in stands of even height.  Furthermore, in stands of varying tree heights, the 
shadows are less uniform in their spatial distribution.  These differences in tone and texture 
between smooth and rough canopy surfaces can be distinguished within medium and high spatial 
resolution remotely sensed imagery. 
 

Figure 9.8 Canopy Roughness 

 
 

 
 

Smooth Canopy 

Rough 
Canopy 

For example, tone and textural differences are visually detectable among CASI images of 
Lodgepole pine stands in the Foothills pilot sites LPY (young stand) and LPM (mature stand) 
(Figures 9.9 and 9.10). Based on measures of canopy height provided by ARC, the mature 
Lodgepole pine stand site is more variable (rougher canopy) than the young stand site. The 
estimated average canopy height for the mature Lodgepole pine stand is 16.5 m (S.D. = 1.3, Var 
= 1.6), and for the young stand, 6.4 m (S.D. = 0.9, Var. = 0.8). The young pine stand image 
(Figure 9.9) is brighter with a smaller variation in discrete tonal features than is the mature pine 
stand image (Figure 9.10).  For the young pine stand image, more pixels representing crowns that 
are highly reflective create a relatively bright scene compared to the mature pine stand image, 
where more shadow pixels predominate. Although difficult to discern at the scale of these figures, 
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the distribution of dark and light areas is more evenly distributed in the young pine stand image 
than in the mature pine stand (Figures 9.9 and 9.10).   
 
To quantify the spatial distribution of tonal features within an image band, texture derivatives can 
be produced and output as images. For envisioning homogeneity, the texture values are scaled 
between 0 and 255; brighter areas (higher digital number values) corresponding to regions that 
are more uniform or unvarying than darker areas (lower digital number values).  Available in 
PCI, the following homogeneity texture algorithm was utilized in this example.  
 
Homogeneity = SUM (i,j=0,N-1)(P(i,j)/(1+(i-j)**2)), where N is the number of grey levels.   
P is the normalized symmetric Grey Level Co-occurrence Matrix of dimension N  x N.   
P(i,j) is the normalized co-occurrence matrix such that SUM(i,j=0,N-1)(P(i,j)) = 1  
V(k) is the normalized grey level difference vector  
V(k) = SUM(i,j=0,N-1 and |i-j|=k) P(i,j)  
 
This algorithm results in homogeneity texture values that vary between 0 and 1.  
 
Several sized windows were moved across the 60 cm and 2 m near-infrared image bands (interval 
of 639.6 nm to 679.9 nm) of LPY and LPM to produce homogeneity texture derivatives for each 
pixel and to calculate the average homogeneity value of the image. For illustration, a 15 x 15 
pixel window for the 2 m data and a 31 x 31 pixel window for the 60 cm data were selected 
because they gave the maximum difference in average texture values for the two pine stands 
(Figures 9.9 and 9.10).  The average homogeneity value for the 2 m LPY image (0.42) is 10% 
higher than the value for the 2 m LPM image (0.32). For the 60 cm sample images, the texture 
values are more similar between the two stand types.  However, the average homogeneity value 
of LPY (0.37) is still 4% higher than the value of LPM (0.33). As expected, the younger stand 
with more evenly sized trees has a smoother image pattern (greater homogeneity) than the older 
stand. 
 
For biodiversity monitoring, changes in canopy roughness could indicate significant changes 
within a stand that are caused by succession, disturbance or uneven growth. In addition, there 
may be a direct relationship between canopy structure and biodiversity, as certain species have 
vegetation structural preferences and/or requirements. 
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Figure 9.9 Canopy Roughness and Texture - Foothills Study Site Lodgepole Pine Young 
(LPY) 
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Figure 9.10 Canopy Roughness and Texture - Foothills Pilot Site, Lodgepole Pine Mature 
(LPM)  
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Example 5 – NDVI and Leaf Area Index  

Reflectance properties of photosynthetic plants detected by multi-spectral remote sensors form 
the basis for vegetation indices; in turn, offering estimates of the type and quantity of vegetation 
on the ground. Healthy leaves absorb red and blue light, capturing energy for photosynthetic 
reactions.  In addition, healthy leaves reflect near-infrared light as a function of their water 
content and cellular structure. Often input as information for classification purposes, the 
Normalized Difference Vegetation Index (NDVI) is established on these reflective properties of 
leaves.  The NDVI is the difference between near-infrared and red reflectance, normalized by the 
sum of the reflectance of these wavelength bands. Besides species composition, factors that affect 
NDVI values include leaf morphology, leaf position on the tree (sunlit vs. shade), brightness of 
incoming sunlight, vegetation stress, and biomass.  Although the relationships between these 
factors and NDVI are complex, certain associations are strong and useful for image interpretation.    
 
As an example of differences among stand types in the Kananaskis study area, a deciduous, a 
mixedwood and a coniferous forest stand are identified based on information obtained in the 
field. Differences in reflectance properties of these stands are directly observable in the CASI 60 
cm false colour and the derived NDVI imagery (Figure 9.11). From sub-scenes taken at the 
locations identified in Figure 9.11, the mean NDVI is calculated for a 16.8 square meter area of 
each stand type (Figure 9.12).  The deciduous stand has the highest mean NDVI and lowest 
standard deviation (0.9; 0.081), followed by the mixedwood stand (0.81; 0.104) and the conifer 
stand (0.71; 0.191).  The higher mean NDVI of the deciduous stand is due to aspen having 
broader leaves at the apex with relatively higher water content, and higher rates of photosynthesis 
than do the conifers at the time the image was captured. 
 
Leaf area index (LAI) is the ratio of leaf to ground area.  A high LAI corresponds to a large 
vegetative biomass. Among stands of a given species in similar environmental conditions, higher 
NDVI values are associated with higher LAI values.  However, the relationship between NDVI 
and LAI is not linear; the rate of change in LAI decreases as NDVI values increase (Figure 9.13).  
As a general rule, the curve levels off (becomes saturation) when LAI is greater than 4. 
Furthermore, the relationship between NDVI and LAI depends on species composition; on the 
whole, deciduous stands have higher NDVI to LAI ratios than coniferous stands due to 
differences in leaf morphology, leaf angle and canopy structure.  
 
As an example of the relationship between NDVI and LAI, two of the AFBMP Foothills pilot 
sites with similar species composition are compared.   LPY (young Lodgepole pine) has a 3.5% 
lower NDVI (0.72) than does pilot site LPM (mature Lodgepole pine) (NDVI = 0.79) with 
estimated LAI values of 3.6 and 4.1, respectively (Figure 9.13).  For forest biodiversity 
monitoring, empirical relationships can be established between LAI and NDVI for dominant 
species and, combined with species classification, used to predict LAI in stands within the 
monitored area as a whole.   
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Figure 10.11  CASI False Colour and NDVI Images - Kananaskis Study Area 
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Along with other forest stand parameters, LAI estimates can be used to model actual and potential 
productivity, important biodiversity elements of forest stands.  
 
As a ratio, the NDVI partially compensates for uneven illumination; reflectance values of both 
the red and near-infrared bands are similarly lowered in proportion to the depth of the shadow.  
Thus, using a NDVI image band lessens the strong shadow effects that influence texture when 
using a near-infrared band alone (see Example 4).  
 
Figure 9.12 CASI False Colour and NDVI Images - Kananaskis Study Area Deciduous, 
Mixedwood and Coniferous Stands 
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Figure 9.13 NDVI and Leaf Area Index - Foothills Pilot Sites: a) Lodgepole Pine Young 
(LPY) and b) Lodgepole Pine Mature (LPM) 
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number of trees, canopy roughness, crown closure, NDVI, vegetation stress, LAI, canopy 
volume, and patch metrics).  These groups contain all of the structural and process-related 
functions of forest ecosystems that can be reliably monitored by remote sensing and verified by 
ground observations in a realistic procedure. 
 
Recommendation 2: To accomplish the monitoring of the nine groups of biodiversity elements at 
multiple spatial scales, high spatial resolution airborne (e.g., CASI or equivalent) or satellite (e.g., 
IKONOS or equivalent) imagery is required. We recommend that the biodiversity monitoring 
sites be prioritized and imagery be acquired as the priorities suggest (such as high priority areas 
being monitored annually).   
 
Recommendation 3: The imagery must be calibrated to reflectance using the best available scene-
dependent empirical methods; such corrections must account for atmospheric, topographic and 
radiometric (e.g., view angle) effects.  Imagery must be geometrically correct. 
 
Recommendation 4: Field data must be acquired to generate classification training data and for a 
variety of analytic and verification purposes (including regression and change accuracy 
assessment).  Field protocols should include the accurate recording of plot boundaries, tree plot 
maps, tree species at each canopy stratum (emergent, medium, tallest), diameter at breast height 
(DBH), tree height, tree age, canopy closure, and leaf health. 
  
Recommendation 5: Based on classification, object identification, and regression data, a change 
detection procedure to detect and identify change is required.  The recommended approach is that 
baseline information be used to compare image data in subsequent years; only those areas 
exceeding a certain threshold would be flagged and checked in the field.  
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