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Executive Summary

The relationship between groundwater and its receiving environment is of particular interest
in the Alberta oil sands region (OSR) where industrial operations have the potential to affect
both the quality and quantity of groundwater resources via e.g., landscape disturbance,
groundwater withdrawals, and tailings pond seepage. Despite groundwater's importance to
natural environments and species communities, monitoring of these interactions has been
limited. Groundwater dependent ecosystems (GDESs) are ecosystems that are maintained by
direct or indirect access to groundwater, and rely on the flow or chemical characteristics of
groundwater for some or all of their water requirements (Rohde et al,, 2017). Here, we present
the results from the first year of a literature review and modeling effort to map aquatic GDEs
within the OSR.

Our first year literature review included three components: (1) groundwater indicators of GDEs;
(2) biological indicators of GDEs to support mapping, with a focus on aguatic environments;
and (3) empirical methods for mapping GDEs.

The groundwater indicator review focused on 26 papers and some highly relevant grey
literature, specific to the oil sands region and our study area (Bickerton et al,, 2018; J. S. Birks et
al, 2012). We summarized both direct groundwater indicators such as water levels and
physicochemical properties of water (e.g., temperature, water quality, isotopic composition),
and indirect indicators derived from topographic and hydrogeological mapping, numerical
groundwater-surface water modeling and remote sensing. Many of these indicators are used
as input to our GDE mapping workflow.

While the biological indicator literature review focused on aquatic GDEs, it also provided some
preliminary knowledge of biological indicators for terrestrial and subterranean GDEs. The
current literature on these topics is limited, with only 28 papers identified in our review, 7 of
which are from Alberta. Despite coverage in the literature of some specific species, taxa, and
other environmental features that could serve as useful GDE indicators in certain contexts, we
conclude that GDE mapping is best informed by maps of wetland classes due to their known
association with groundwater inputs.

The GDE mapping methods literature review included 22 papers and summarizes approaches
used at a variety of scales (global to local) across the world, with an emphasis on methods
appropriate for the boreal region, including studies from Finland. We surmmarize approaches
using remote sensing (e.g., spectral vegetation indices and thermal imagery), integrated
hydrological modeling, suitability mapping and machine learning. The selected method was
machine learning, using the MLMapper tool (Martinez-Santos et al,, 2021) because it is capable
of leveraging multiple data sources of differing data types to achieve high predictive accuracy
where data limitations exist, and is scalable to large spatial areas.

We identified and collated available geographic, geologic, hydrologic and landcover data for
mapping GDEs. Over 50 datasets were identified, with over 40 datasets compiled. From the
available data, we selected appropriate data to serve as training & validation data and
explanatory variables in MLMapper model and identified data gaps. The key data gaps are
access to the McKay River Integrated Surface Water-Groundwater Model, hydraulic head data,
and higher resolution thermal data, among others.



Based on the results of the three literature reviews and data compilation, we undertook a
machine-learning based modeling approach in the McKay and Steepbank River watersheds
using a variety of topographic, hydrogeologic, and wetlandAegetation predictor data, with
indicators from the literature review informing variable selection. Final variables included in
the modeling were aquifer hosting sediment, bedrock, depth to water, elevation, flow
accumulation, normalized difference vegetation index (NDVI), permeability, wetness index,
slope, soil drainage, and wetland class. Model fit of the top-performing models, as assessed by
internal cross-validation, was very high. Outputs from the top five models were averaged into a
final ensemble model of GDE probability.

The CDE maps identify lower river reaches, riparian areas, and wetlands (e.g., fens) as GDEs, but
do not capture lakes, likely due to the lack of training data in the modeling pipeline. Upland
areas are mostly categorized as non-GDEs. We conclude with suggestions for next steps in
model development and application, as well as for potential improved or additional datasets
that could be integrated going forward.

1. Introduction and Background

Natural resource development in northwestern Alberta’s oil sands region (OSR) continues to
expand. Understanding the impacts of various related anthropogenic stressors on the region'’s
landscapes, water resources and biota is crucial to effective land use planning and
management. Since 2011, the federal and provincial governments have worked together on
environmental monitoring in the OSR through the Oil Sands Monitoring (OSM) Program. In
2017, both governments renewed their commitment to working together with Indigenous
communities and industry in the region. The OSM Program strives to improve and continue to
add to current understanding of environmental conditions and potential oil sands-related
effects, in the areas of air quality, terrestrial biology, wetlands, surface water and groundwater.
The latter is a less visible, and therefore sometimes overlooked, but essential component of the
hydrological cycle.

The Royal Society of Canada report on Environmental and Health Impacts of Canada's Qil
Sands Industry (2010) noted that groundwater and surface water are often treated separately
but are intimately linked and long-term environmental management should be based on an
integrated approach. To implement these recommendations, the Joint Oil Sands Monitoring
Plan (2011) for the Lower Athabasca River watershed included a groundwater component to
improve understanding of groundwater-surface water interactions recognizing that this is
essential knowledge for a program focused on aquatic ecosystem health impacts.
Foundational work has been completed on assessing groundwater influence on selected river
systems in the OSR (e.g., McKay) (Bickerton et al,, 2018). Nevertheless, a 2022 “Condition of the
Environment: Groundwater in the Oil Sands Region” report produced for the OSM Program by
InnoTech Alberta reviewed important pathways (e.g., groundwater water recharge, flow,
transport) by which stressors (e.g., landscape disturbance, groundwater withdrawals, spills,
leeks, or seepage, etc.) can impact groundwater and groundwater discharge quality and/or
quantity (3. S. Birks et al., 2022). While providing important insights on groundwater
stressor-pathway-response in the OSR, this report highlights a continued knowledge gap that



remains: the occurrence and condition of groundwater dependent ecosystems (CDEs) within
the area. In particular, key OSM program questions this work supports include:

e Do changesin groundwater have effects on the receiving environment?

e Do changes to groundwater impact harvesting and occupancy patterns, harvesting
volumes, intergenerational transfer of knowledge, sharing of resources linked to the
reinforcement of kinship bonds, people's relationship and obligations to the land?

With regard to the OSM's Groundwater Technical Advisory Committee, more specific key
questions include:

e \Where are the significant areas (e.g. groundwater dependent ecosystems) of
groundwater connectivity (i.e. groundwater discharge/recharge) to surface waters such
as streams, wetlands, springs and lakes?

e Has the quality and quantity of groundwater discharge to groundwater dependent
ecosystems (GDEs), or other surface waters of interest, changed?

e \Whatisthe cause of any unexpected changes identified in preceding items?

GDEs are defined by Rohde et al. (2017) as “Ecosystems that are maintained by direct or
indirect access to groundwater and rely on the flow or chemical characteristics of groundwater
for some or all of their water requirements.” Alternate definitions emphasizing slightly different
qualities such as species composition are found elsewhere (e.g., Serov & Kuginis, 2017)), but
here we rely on the definition fromm Rohde et al. (2017). GDEs themselves can be only partially,
intermittently, or seasonally dependent on groundwater inputs. Within the context of the OSR,
engineered or anthropogenic GDEs are likely to occur alongside natural GDEs, given the
existence of wetlands resulting from reclamation practices.

GDEs are important features of the OSR landscape, fulfilling important ecological functions by
supporting unigque vegetation communities, maintaining local water quality and quantity, and
acting as a mitigating factor in the face of climatic extremes (e.g., drought). They are of critical
cultural and traditional significance to local Indigenous communities because
groundwater-derived base flow supports navigation, and GDEs support vegetation and animal
communities harvested by Indigenous communities (e.g., they provide ungulate watering
holes, salt sources, waterbird habitat, base flow in fish habitat). Groundwater ecosystems
themselves are far more complex than previously thought, showing high levels of trophic
complexity and specialization often dominated by endemic microbial and other species (Saccd
et al, 2024). GDE and general groundwater conservation efforts lag behind those for more
visible surface water or terrestrial ecosystems, and where they exist, are in place because of the
economic value of a given aquifer or other groundwater source (Rohde et al., 2017; Sacco et al,
2024).

GDEs by their nature are sensitive to changes in groundwater discharge, both in quantity and
quality, and for this reason, act as an ecological assessment endpoint. While it is expected that
GDEs may be impacted by oil sands development, based on the known impacts to
groundwater, understanding of the stressor-pathway-response interactions that lead to
changes in GDEs and associated monitoring have been limited by a lack of understanding
regarding the extent and distribution of GDEs in the OSR. Improved identification of the
location of GDEs in the OSR (i.e, mapping) will help support baseline assessments and develop



appropriate long-term monitoring initiatives for cumulative impacts of local and regional oil
sands activities.

The overall objective of the GDE Project is to map GDEs across the OSR and provide
information on pathways in the conceptual model (impact of groundwater recharge and flow
and transport of constituents of concern on terrestrial and aquatic ecosystem health) and
identify opportunities to evaluate the response of biological commmunities to oil sands-related
stressors (see Figure Al and Figure A2 in Appendix A).

The objective of this work for the 2023-2024 fiscal year is to map aquatic GDEs across a pilot
area in the OSR so that they can be used to refine a long-term monitoring plan for
groundwater and contribute to identification of cumulative effects in agquatic and terrestrial
environments.

The current work is being undertaken using a phased approach. Given the long-term objective
of mapping GDEs across Alberta's OSR, this first phase consists of collaborative efforts between
the OSM GCroundwater Technical Advisory Committees (TACs), and the Alberta Biodiversity
Monitoring Institute (ABMI) and InnoTech Alberta. Outcomes of the work will also be shared
with the Terrestrial Biological Monitoring (TBM) Technical Advisory Committee in recognition of
the important relationships to their work. It forms a scientific and practical foundation for
future mapping phases, which are anticipated to incorporate wider OSM support of mutual
monitoring plan integration and knowledge sharing.

Deliverables for this project for the 2023-2024 fiscal year include:

e A technical report (i.e., the current document), presenting the outcomes of the tasks
listed below:

o Areview of the academic and grey literature on GDE mapping approaches and
groundwater indicators that includes:

= boreal GDE category definition;

= use of methods or rules for identifying and mapping GDEs using

examples from other jurisdictions; and

= recommendations for validating approaches used for GDE mapping and

identification of existing datasets that could be leveraged to support
these approaches;
o Areview of the academic literature on biological (i.e., key species and
community) indicators of aquatic GDEs in boreal systems (future work will
include terrestrial and subterranean GDEs);



o Theidentification, review, and collation of data sources currently available within
the OSR to support GDE mapping using identified approaches, including the
identification of data gaps and recormmendations for filling these gaps;

o Initial GDE mapping within a selected area of interest in the OSR, using the
collated data and identified approaches;

e Adigital, annotated geodatabase of the initial GDE map product, complete with
metadata and methods documentation; and

e Summary presentation of the project's outcomes and results to the Groundwater TAC.
GCDEs generally fall into the following broad categories:

e Aguatic (e.g, rivers, streams, lakes, wetlands, and springs);
e Terrestrial (e.g, riparian areas); and

e Subterranean (e.g, cave systems, aquifers).

The scope of the first year of the project’s (2023/24) initial GDE mapping work focuses on
aqguatic GDEs in the OSR.

2. Definitions and GDE Categories

Sustained hydrological sources are imperative to ensuring healthy ecosystem function;
conversely, during periods of hydrological scarcity, ecosystems can undergo drastic changes
depending on their water source. Groundwater dependent ecosystems (GDEs) have a diverse
range from aquatic, to terrestrial, to subterranean ecosystems. While their dependence on
groundwater contributions can fluctuate throughout the year as annual precipitation and
seasonal demand fluctuate, the presence of these ecosystems relies on a sustained source of
groundwater for maintaining ecosystem function (e.g., by providing hydrological and nutrient
inputs). GDE expressions are typically observed in both above-ground expressions (lakes, rivers,
streams, springs, and seeps during base flows) as well as subsurface presence where
phreatophytes (deep rooted plants) access water during periods of low hydrological availability
(Klausmeyer et al, 2018) or where there are wet cave ecosystems. Although the definitions of
GDEs evolve with the progression of the field and are defined differently within differing
jurisdictions, the definition set out by Rohde et al. (2017):

“Ecosystems that are maintained by direct or indirect access to groundwater, and rely
on the flow or chemical characteristics of groundwater for some or all of their water
requirements"

will be used for this project and encapsulates the generalized definition that GDEs may only be
partially dependent on groundwater or may only demonstrate seasonal or intermittent
dependence on groundwater. Serov and Kuginis (2017) provided a definition that emphasizes
natural elements, and ecological aspects rather than the more generic reliance on water
requirements:



“Natural ecosystems which have their species composition and natural ecological
processes wholly or partially determined by groundwater”,

Although natural ecosystem elements can be used to identify GDEs, this is significantly more
challenging within cooler high-latitude environments (Autio et al,, 2023), such as the boreal
forest of Alberta. These environments typically have shortened growing seasons and less
evaporative demands, as is the case of the wetland-dominated landscapes found in the OSR,
where vegetation indicators are more difficult to apply. In contrast, identifying GDEs within
southern Alberta, where higher hydrological demands occur, leverage the use of plant vigor for
detection of surface and groundwater interactions (Van Der Kamp & Hayashi, 2009). Currently
the definition of GDEs does not make distinctions between anthropogenic and naturally
developed systems, however within the context of Alberta, engineered GDEs are likely an
important component to consider as footprint is reclaimed.

Similar to quantifying whether an ecosystem is groundwater dependent, sensitivities of GDEs
can fall into finer class segments, and determination of ecosystem sensitivities is correlated to
the species and environmental conditions present within the GDE. The assessment of GDE
sensitivities can be broken down first into climate classifications. According to the
Thornthwaite climate regimes there are broadly five categories which are identified on the
basis of monthly precipitation to evaporation ratios (P/E): (hyper humid “wet” (127), humid
“forests” (127-64), subhumid “grasslands” (63-32), subarid (63-32), semi-arid “steppe” (31-16), arid
“desert” (<16)). The impacts of climatic shifts are more pronounced within arid and semi-arid
GDE environments, due to inherent water limitations present there. Disruptions to these
particular ecosystems makes them highly sensitive to fluctuations of groundwater, with
noticeable effects on ecosystem community composition such as changes in vegetation
communities from aquatic to drought tolerant species (Beasley-Hall et al,, 2023; Doody et al.,
2017). As a result, the prevalence of GDEs on the landscape can easily be quantified in arid and
semi-arid regions, as the water stress impacts plant and ecosystem functions, which is often
first reflected in the degree of measurable vigor in vegetation.

In high latitude climates that are not hydrologically limited, the presence of GDEs can be more
difficult to detect. Monitoring these ecosystems at a large scale serves as a critical pillar for the
OSM program, helping to ensure that any changes to these sensitive systems are identified
prior to significant adverse effects. However, the first step in developing an appropriate
monitoring program is the identification of their location within the OSR (Strategic modeling
plan TAC, 2019). GDES' inclusion into the OSM groundwater monitoring framework will serve to
highlight possible pathways through which stressors may influence these systems, while
understanding that the degree of reliance on groundwater has the potential for partitioning
GDEs into subcategories, which may help determine monitoring priorities. Within the OSM
Program'’s Technical Report Series Bickerton et al’s (2018) compilation of multiple techniques
for assessing groundwater influences within the OSR of Alberta highlights the influences of
groundwater on surface water expressions of tributaries to the Athabasca River and the need
for future monitoring of surface water - groundwater interactions. Specifically, there are direct
contributions of groundwater along various reaches of the MacKay River, and, as a whole,
groundwater might contribute as much as 35% during under ice flow compared to 2-10%
during low flows (Bickerton et al., 2018). Thus, consideration of both average and seasonal
contributions of groundwater to GDEs should be considered.
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Croundwater dependent ecosystems fall into three categories: aquatic, terrestrial and
subterranean.

2.21 Agquatic GDEs

Aquatic GDEs include all springs, rivers, streams, lakes, and wetlands with groundwater
contributions. All these aquatic ecosystems occur in the Boreal region of Alberta.

Springs occur when groundwater overflows onto the land surface and can range in size from
small seeps to pools. Springs with high mineral content can be associated with wet mineral
licks (or “salt licks”) which are utilized by ungulate species, can develop into muddy clearings
("*wallows") when used by elk and moose, and may influence the spatial structure and
movements of ungulate populations. In the OSR, discharge of saline groundwater occurs
where Devonian carbonate bedrock intersects the land surface (e.g., along river valleys).

Rivers and streams can receive base flow from groundwater, which provides flow during
low-flow and frozen conditions (e.g., supporting in-stream flow needs), constant-temperature
water supply, and refugia for aquatic species such as fish and benthic invertebrates. Rivers and
streams can have reaches that are “gaining” i.e. groundwater is contributing to the flow along
these sections. During the winter, when many surface water bodies are frozen, springs and
gaining sections of streams may remain unfrozen, providing access to liquid water for animals
(e.g., ungulate watering holes, waterbird habitat). During frozen conditions, aufeis, or a layered
mass of ice (also called icings), can also form from the freezing of successive flows of
groundwater over previously formed layers of ice which can maintain unfrozen conditions
beneath the insulating ice layer providing a perennial groundwater habitat (Huryn et al,, 2020).

Lakes with subsurface inflow contributing to the lake water balance are GDEs. Topographic
position, bathymetry, surficial and bedrock geology, and presence/absence of permafrost are
some of the factors that influence the groundwater dependence of lakes in the OSR.

By definition, all wetlands classified as fens are GDEs. Fens are estimated to cover 21% of the
recently mapped portion of the OSR (Alberta Biodiversity Monitoring Institute & Ducks
Unlimited Canada, 2023) and are thus a critical component of GDE mapping within the OSR.
Other classes of wetlands that may have groundwater input include shallow open water
wetlands, marshes, and swamps.

The movement of water between groundwater and surface water provides a major pathway
for chemical transfer between the subsurface and surface water. For example, groundwater
can supply carbon, oxygen, and nutrients such as nitrogen that affect biological processes.

2.2.2 Terrestrial GDEs

Terrestrial GDEs include vegetated land such as uplands and riparian areas where
groundwater provides water supply for plants but where surface water may not continually
present. These habitats often occur along rivers and streams (Luke et al,, 2007) and in
floodplains, and in upland areas where there are phreatophytes: vegetation that depend for
their water supply on groundwater that is within the reach of their root systems.
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2.2.3Subterranean GDEs

Subterranean GDEs include caves and aquifers. Caves are subterranean GDEs when the plant,
animal, or microbial communities within depend on the presence of groundwater on a
permanent or intermittent basis to meet all or some of their water needs. Underground caves
and streams can form in karst landscapes, which in the OSR form from the dissolution of
carbonate bedrock of Devonian age. At the surface, karst landscapes feature sinkholes.
Aquifers occur in many different geological formations, and at varying depths in the OSR.
These subterranean ecosystems are inhabited by microbial cormmunities, and can also host
stygofauna (i.e, agquatic animals such as arthropods and other invertebrates, as well as
vertebrates including fishes and salamanders).

Within Alberta, surface karstification is more prominent within the Rocky Mountains, where
both geological formations (limestones) are susceptible to dissolution from increased
hydrological gradients that help facilitate subterranean ecosystems to form (D. Ford, 1987; D. C.
Ford, 1997). In the far north-east of Alberta (e.g., in Wood Buffalo National Park) hundreds of
sinkholes are common landscape feature formed from dissolution of the at or near-surface
Middle Devonian Elk Point Group evaporites, as well as networks of underground cavernous
systems and prominent escarpments making this area some of the most extensive karst
landscapes in North America (Altosaar, 2013b; Parks Canada, 2022). Many of these “karstland”
features were mapped and reported on in 2012 and 2013 by Suncor (Altosaar, 2013a). These
systems contrast the OSR where karst formations are primarily caused via the dissolution of
highly soluble evaporites (halite) which are remnants of the region being an ancient inland sea
(S.J. Birks et al,, 2022; Broughton, 2018),and are located deeper in the formation offering higher
protection by the glacial till overburden from hydrological weathering (D. Ford, 1987; D. C. Ford,
1997).

3. Study Area

The oil sands region of Alberta covers 142,200 km? in northeastern Alberta, encompassing the
Athabasca, Peace and Cold Lake oil sands regions. These regions fall almost entirely within the
boreal ecoregion of Alberta. Terrestrial boreal habitats are peatland dominated mix of drier
upland and lower wetland habitats. Forested uplands consist of boreal mixed woods, mostly
spruce or aspen dominant stands with some pine stands in areas of sandy, well-drained soils.
Wetland habitats in the oil sands region fall into a few hydrologically- and ecologically-defined
classes, including fens, bogs, swamps, and shallow open-water wetlands. Fire is a major natural
driver of change in the boreal and creates a mosaic of variable forest stand ages across the
landscape. Forestry, energy development, and other industrial operations also create
widespread and notable linear (e.g., roads, seismic lines, pipelines) and polygonal (e.g., cut
blocks, mines, well pads) disturbance features throughout the region. Oil sands industrial
operations are composed of two main processes of bitumen extraction: (1) surface miningin a
relatively contained area north of Fort MacMurray, which creates the enigmatic mines and
roads typically associated with oil sands operations; and (2) in situ mining for below-ground
extraction, which creates a more widespread network of roads, wellpads, seismic lines, and
pipelines across the entire region.
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The first year of GDE work focuses on two tributaries of the Athabasca River in the Athabasca
Qil Sands Area north of Fort McMurray. This study area spans 3,078 km? of the lower McKay and
Steepbank River watersheds (Figure 1). Advice was solicited from the GoA and ECCC Technical
Advisors for the project on Study Area selection. Of the multiple options considered for a study
area within the Athabasca OSR, these particular watersheds represented areas where: 1) recent
and relatively high resolution wetland inventory mapping had occurred (OSM Wetlands
Inventory Project 2022/23); 2) multiple OSM-funded research and monitoring projects such as
groundwater modeling, have been conducted (e.g., work by (Bickerton et al,, 2018) along the
McKay River); 3) isotope-based streamflow partitioning has revealed higher fractions of
groundwater contributions in river tributary flows (i.e., on the east side of the Athabasca River
(Gibson, Vi, et al.,, 2016)); and/or 4) a greater amount of relevant field or modeled data were
available. These watersheds best leveraged the current knowledge and data available within
the OSR that could support GDE mapping. The large majority (98.6%) of the selected study
area falls within the area of the North Athabasca Oil Sands. The study area was selected to have
upgradient areas without oil sands mining activities as well as areas with a variety of oil sands
mining operations. This could allow for future evaluation of differences in GDE mapping in
undisturbed and disturbed areas.

The study area is within the McMurray Lowlands and Regional Uplands hydrogeological
regions of Alberta and the geological history and region maps can be explored in the Alberta
GCeological Survey's StoryMap (Alberta Geological Survey, 2021). These areas have been well
studied from a geological and hydrogeological perspective given the prominence of oil sands
extraction in the region. Lying between topographic high areas including Muskeg Mountain to
the east and the Birch Mountains to the northwest, this region sits near the edge of the
Western Canadian Sedimentary Basin where bedrock is closer to the surface than in most
other regions of Alberta. Surficial sediment thickness varies greatly from <5m to >100 m. Local
scale groundwater movement is driven by upland recharge areas and dynamic interactions of
boreal wetlands with shallow groundwater. Cretaceous formations contain important
nonsaline aquifers as well as the bitumen-bearing McMurray Formation. Devonian formations
host saline groundwater that discharges in saline springs where the Athabasca and Clearwater
rivers have eroded into these formations, and in some areas, ongoing dissolution of carbonate
and evaporite bedrock continues to form karst landscapes appearing as circular ponds and
wetlands that form above active sinkholes. Groundwater salinity is highly variable due to the
complex geology and groundwater flow. Discontinuous permafrost exists in at least 87 small
areas within the Study Area (Pawley & Utting, 2018).

In the last decade, groundwater-surface water interaction in the Study Area has been studied
for rivers, open water wetlands and lakes (Gibson et al., 2019). In the McKay and Steepbank
Rivers isotope-based streamflow partitioning and differential gauging (Bickerton et al., 2018;
Gibson, Vi, et al,, 2016) revealed 14-45% and 4-65% (McKay) and 29-69% (Steepbank)
contribution from groundwater (notably higher on the east side of the Athabasca River). In the
McKay River both studies estimate an approximately 3-fold increase in groundwater
contribution in the winter compared to the fall. Between ~20-50% of shallow open water
wetlands are groundwater reliant based on wetland water balance calculations using water
isotope data collected by ABMI and analyzed by InnoTech Alberta between 2009 and 2019
(Gibson et al,, 2022). In the study area northeast of Fort McMurray lake water quality was
monitored for over 15 years under the Regional Aquatic Monitoring Program (RAMP, Joint Oil
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Sands Monitoring Program (JOSM) and OSM evaluating water balance, permafrost thaw and
pH changes (Gibson et al,, 2019) .

The study area map (Figure 1) shows the area of interest (focused on the McKay and
Steepbank watersheds) and the larger analysis boundary area. Data was acquired for the
analysis area and processed prior to clipping to the smaller area of interest. Analyzing the
larger area of analysis allowed for the establishment of baseline environmental and geological
conditions, offering background details that aid our understanding of the specific
characteristics defining our area of interest. The expanded analysis area helps to identify
potential external influences that might not be within the area of interest, but could have
effects on it. In this report, maps reflect the larger area of analysis to provide the important
context as identified above, evaluation and discussion of outcomes does, however, focus on the
smaller area of interest.

[ ilsands Region
Area of Interest

L_J Analysis Boundary
‘Human Footprint 2020 3
Bitumen Surface Mining|
Bitumen Insitu
Other HFT

Figure 1. Map of the study area in the Alberta Oil Sands Monitoring program area, showing
the area within the Northern Athabasca Oil Sands Region, the area of interest, the analysis
boundary, and human footprint components.
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4. Literature Review: Indicators of GDEs

411 Overview

A comprehensive literature review was conducted by search for keywords “Groundwater

dependent ecosystem*”, “mapping

nou

nou

1

nou

machine learning”, “peatland™’, “groundwater surface

nou

nou nou

nou

water interaction”, "“Athabasca oil sands region”, “karst”, “eskers”, “surficial geology”, “EM survey”,
“spring™”, “seep*” within the peer-reviewed literature and leveraging key papers (Table 1).

Focus was given to surface and groundwater interaction, groundwater indicators, and

mapping of GDEs within Boreal environments, with a total of 48 papers reviewed. These
papers focused on the geographical regions of Alberta and outside of North America (World). A
total of 4 review papers were used to guide current methods for mapping of GDE systems. The
main focus areas of the literature broadly focused on five main topics (Isotope & Geochemical,
GDE mapping, Modelling, Lake, Rivers, Wetlands), with papers able to fall within multiple
topics (see Tables B1and C.2 in Appendices B and C, respectively).

Table 1. Summary of number of papers included in the literature review of groundwater
indicators of GDEs, summarized by the geographic location of study or interest (top) and by
topic focus area (bottom). Note that some manuscripts discussed more than one topic focus
area and so may be counted in multiple groups. Full citations are provided in Appendix B.

Geographic Location

Alberta Canada Outside Canada Review Total
Number of papers | 22 2 20 4 48
Topic Focus Area(s)*
Isoiicioe an_d GDIE : Modeling | Lakes Rivers Wetlands
Geochemical Mapping
Number of Papers | 31 22 16 12 17 24

Foundational grey literature on GDEs from Alberta the OSR was included in the literature
review as well including but not limited to an appendix developed by the Government of
Alberta on GDEs for Groundwater Management Frameworks and Bickerton et al. (2018).
Methods for measuring aquatic GDEs, and specifically surface water - groundwater interaction
in the Athabasca oil sands region are described in Birks et al. (2012) including field and desktop

methods.
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412 Direct Groundwater Indicators

Birks et al. (2012) summarizes methods for monitoring direct indicators. These include, but are
not limited to, physical indicators (e.g., groundwater levels, seepage measurements), locations
of springs, aufeis (see also Ensom et al,, 2020; Huryn et al,, 2021),and other indicators discussed
below.

The physicochemical properties of surface water can give insights into the presence of GDEs.
More specifically, measurements of temperature and conductivity can aid in identifying GDE
presence when assessing groundwater that has had mineral interactions. The temperature of
groundwater primarily reflects the average seasonal temperature of the region (J. S. Birks et al,
2012: Hayashi & van der Kamp, 2023) such that during summer months in particular, thereis a
higher contrast between cool groundwater seeps and warmer surface waters (Bertrand et al,
2014; Pérez Hoyos et al, 2016). These temperature differentials can also be indicative of aquatic
systems that are recharging or discharging groundwater, allowing for source and direction of
surface and groundwater interactions to be inferred (Bertrand et al,, 2014; Watts et al,, 2023) .
Temperature can be measured directly or via remote sensing. Solute loading within water
increases its conductance, which are reflected in physicochemical differences with higher
specific conductance, variation in pH and oxidation reduction potentials dependent on which
mineral substrate water has come into contact with (A. Gue et al, 2018; A. E. Gue et al,, 2015).

Additionally, direct indicators of GDEs can be expressed through hydrochemical facies that
exhibit increased dissolved solutes in the form of dominant cation and anions, which are
indicative of longer temporal scales of water and mineral interaction (S. J. Birks et al,, 2022;
Gibson et al,, 2013; Manchuk et al,, 2021; Wells & Price, 2015). Depending on the dominant cation
and anions present, these ions can give indications about whether hydrological sources are
from deep basin brines (primarily halite dissolutions), or shallow glacial tills (carbonate and
silicates) (J. S. Birks et al,, 2012: S. J. Birks et al,, 2022; A. E. Gue et al, 2015). These deep aquifer
systems access the surface through evaporite channels and karst systems which allow for the
presence of highly saline groundwaters to migrate to the surface (Broughton, 2018; Hein &
Cotterill, 2006; Walker et al,, 2017; Wells & Price, 2015). Salinity can also be influenced through
evaporation effects: minerals can precipitate, forming mineral deposits at the surface that can
then be redissolved with precipitation or snowmelt. The latter process is seen in the prairie
pothole regions of Alberta (Hayashi et al,, 2016). Depending on hydrological contributions and
processes, the characterization of GDEs can be limited when using salinity alone as an
indicator of GDEs presence and should be used in conjunction with hydrological tracers.

The extensive use of stable isotopes and radioactive tracers can offer unique tracers to identify
hydrological systems under the influence of groundwater. Both deuterium and oxygen-18 (?H,
80) are stables isotopes which fractionate at predictable intervals and have been used to
partition surface and groundwater contributions to many aquatic features (lakes, rivers, and
wetlands) - as they are components of the water itself, they make ideal tracers to infer
hydrological contributions and processes of aquatic systems (Gibson, Birks, et al., 2016; Gibson
et al, 2019, 2020, 2022; Gibson, Yi, et al., 2016; Gibson & Peters, 2022). Isotope ratios of other
solutes, including sulfate and strontium, among others, can also be helpful in tracing
groundwater - surface water interactions.

The use of radioactive tracers is another tool for inferring contributions of groundwater to large
aquatic systems. Radon (??Rn) occurs from the decay of radium-226 parent material. As it is a
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noble gas, it does not participate in any biological or chemical processes with which it comes
into contact, and has a relatively short half-life of ~72 hours. It has been used to quantify water
budgets of lakes, most notably in two boreal lakes within the OSR, which found that
groundwater contributions in the lakes varied from (0.5% to 14% annual flows) and that
catchment size and benthic sediments are likely to play a controlling role in groundwater
contributions (Schmidt et al., 2010). Due to the short half-life of Radon, it has the ability to be
used to rapidly assess groundwater inputs, contrasting the longer temporal time frame for
stable isotopes, which allows for complementary information on lake water budgets (Arnoux et
al., 2017). A limitation of Radon is that it requires mineral parent materials and can be
influenced by long transit times within peat, reducing some of its use in heavily organic
substrates as a tracer for groundwater (Schmidt et al,, 2010).

413 Indirect Groundwater Indicators

Geophysics and remote sensing approaches can be used for mapping the groundwater table
(J. S. Birks et al,, 2012). In the oil sands region, recent work by the Boreal Ecosystem Recovery &
Assessment program demonstrated the use of orthophotography and photogrammetric point
clouds for mapping groundwater level and depth to water (Rahman et al,, 2017).

Within river and stream systems, gaining and losing reaches can be quantified during
baseflow, giving indications of the potential for regions with both groundwater discharge
(GDEs) and recharge areas. This can be accomplished via flow gauging, hydrographic analysis
and isotope partitioning (Bickerton et al, 2018; J. S. Birks et al., 2012; Gibson, Vi, et al., 2016).

In addition to direct physicochemical indicators, physical landscape and subsurface features
can also play an important role in assessing the presence of GDEs but are considered indirect
indicators. Such features include the topography of the landscape, and surficial and bedrock
composition. Topography plays a role in the assessment of GDEs with low lying areas having a
higher chance for seeps and springs from groundwater to occur (Freeze & Cherry, 1979: Heagle
et al,, 2013) . Groundwater within these locations is more likely to collect and can indirectly be
modeled through geospatial mapping techniques by assessing flow directions and flow
accumulations, which highlight regions where water is more likely to collect. These low-lying
areas are contrasted by higher elevation areas which are less likely to be GDEs and more likely
to be perched hydrological features (Heagle et al., 2013).

Hydrogeological mapping of geological and hydrological properties of the subsurface provides
conceptual/indirect understanding of GDEs (see Figure Aland Figure A2 in Appendix A).
Surficial and bedrock geological compositions influence the movement of groundwater in
both discharge and recharging systems (S. J. Birks et al,, 2019, 2022; Broughton, 2018; Freeze &
Cherry, 1979; Hein & Cotterill, 2006). Differences in surficial materials primarily control the
permeability of the soil structure (Hein & Cotterill, 2006). Features with coarse textures and
larger pore spaces (e.g., sands and gravels) allowing for increased hydrological conductivity and
a higher probability of being a GDE if positioned in low lying areas on the landscape. These
contrast with fine-textured materials (silts, clays) which typically impede flows (S. J. Birks et al,,
2019, 2022; Hein & Cotterill, 2006). Recent higher resolution mapping of quaternary surficial
layers has highlighted the interconnectivity of both buried channels and surficial geological
formations (Andriashek, 2001, 2007; Atkinson, 2022a, 2022b, 2022b; Atkinson et al., 2013;
Atkinson & Pawley, 2022; Pawley & Atkinson, 2022; Utting, 2023), which likely play a controlling
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force on the presence of GDEs within the OSR through vertical groundwater discharge (Hein &
Cotterill, 2006; Wells & Price, 2015). Bedrock structure can influence the hydrological
connectivity with buried channels and fractured rock systems which allow for hydrological flow
to migrate to the surface; these contrast with impervious layers which will act as hydrological
barriers (S. J. Birks et al,, 2022; Broughton, 2018). In areas where these channel and fracture
features have been mapped there could be a higher probability of GDEs being present on the
landscape.

These indirect indicators can be brought together in 3D numerical groundwater models and
used to identify areas of groundwater interaction with the land surface (e.g., Aquanti HGS and
McKay River Integrated Surface Water-Groundwater (J. S. Birks et al,, 2012) models). These
models can be very useful in testing scenarios of water use and climate change, and to inform
field campaigns, but can be data hungry, costly and time consuming to develop. The most
relevant types of numerical groundwater models for studying GDEs are integrated surface
water - groundwater interaction models such as GS-FLOW, HydroGeoSphere (HGS), Parflow
and MIKE SHE. A coarse-resolution regional-scale HGS model for the Athabasca River Basin
was created by COSIA, and is used in this study. As well as a tributary-scale model using
GS-FLOW for the McKay River watershed (originally created for CEMA, and updated for ECCC
and OSM). Other types of groundwater models (e.g., MODFLOW, FEFLOW) are not as rigorous
for estimating surface water contributions to aquatic ecosystems, but do exist in other areas of
the OSR.

421 Overview

A comprehensive literature review of aquatic GDEs was conducted using Web of Science and
the keywords: groundwater; groundwater indicator; groundwater dependent ecosystem;
indicator; bio* biol*; Alberta; Canada; boreal; north*; fen; swamp; microb* stygo* macrophyte;
vegetation; vascular plant; moss; bryo*; fauna; geophagy; mammal* In total, 28 papers were
used in review (Table 2). Selected papers were leveraged by reviewing both cited papers within
a manuscript and papers that had cited that manuscript since its publication, i.e, the citation
network function in Web of Science. Papers were evaluated based on their relevance in
establishing empirical evidence to support indicator development for GDEs. ‘Indicator’ in this
context was considered both from the perspective of biological metrics that could identify the
location of GDEs and as biological metrics that could be used to monitor impacts of
development and operation of industrial facilities (i.e., ecological endpoints). Review papers
were considered valuable. Several papers that aimed to assess stressor impacts to GDEs
simultaneously provided evidence in support of selected biological indicators of GDE presence.
Relatively few assessed stressor impacts without providing such evidence. Papers from Canada
were prioritized, followed by papers from areas with boreal, and then otherwise forested,
landcover (e.g., Finland, Switzerland, France, United States). Papers from Australia were
considered low priority due to fundamental differences in glacial history, ecology, and geology
when compared to northern Alberta and due to their focus on arid environments.
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Table 2. Summary of number of papers included in the literature review of biological
indicators of aquatic GDEs, summarized by the geographic location of study or interest (top)
and by topic focus area (bottom). “Other” is inclusive of lonescu et al. 2022 and Driscoll et al.
2019, focused on biotic homogenization and natural range of variability, respectively. Note
that some manuscripts discussed more than one focus area or indicator and so may be
counted in multiple groups. Full citations are provided in Appendix C.

GCeographic Location
Alberta Canada OUitElie2 Review | Total
Canada
Number of papers |7 8 9 4 28
Topic Focus Area
Macroinverts,
Vegetation |Microbes, Mammals | Other Background
Stygofauna
Number of Papers |11 12 2 2 2

The literature review made clear that there is limited research and therefore limited
understanding of the role of groundwater in structuring and maintaining the biological
components of aquatic GDEs in boreal ecosystems or limited understanding of what those
components may be, particularly in the case of stygofauna and microbial cormmunities.
Broadly, the conceptualization of groundwater systems as ecosystems, with associated biota
above and belowground, is an emerging theme in the literature. However, this work is more
advanced in Australia than in other global locations (Hancock et al., 2005) and thus may not be
specifically relevant to the boreal environments that were the primary focus of this review.

Biological indicators were rarely used to map aquatic GDEs (but see Craillot et al, 2014). Rather,
biological indicators were more typically used to identify groundwater influence at local scales
(Larocque et al,, 2016; Munger et al,, 2014)or as receptors of groundwater mediated effects, such
as land use and contamination impacts (lonescu et al., 2022; Lehosmaa et al,, 2018). Changes in
biological indicators can be monitored at a variety of ecological scales—individuals,
populations, and communities—and metrics can include the condition, productivity,
demographics, structure, or function of a range of indicators, from species to ecosystems
(Eamus et al,, 2006; Oiffer, n.d.). To address the complexity of ecological systems, indicator
approaches such as sentinel species may be appropriate, particularly as larger scale change,
such as to ecosystem structure and functions, may be slow to manifest (Rohde et al,, 2017) or
may be missed in the context of the natural range of variability of the larger GDE.

Crey literature was not targeted in the review and is not captured here but could be a valuable
source of knowledge for future review. Notably, a draft report prepared by the Government of
Alberta (Oiffer, n.d.) and made available for this project provides broad categories of biological

19



indicators based on methods described in Eamus et al. (2006) for health of groundwater
dependent vegetation.

The 2023-24 biological indicator literature review was not comprehensive of subterranean and
terrestrial GDEs, excluding manuscripts focused on ground- and surface-water interfaces that
included subterranean indicators and associated discussion of subterranean groundwater
resources. These indicators, specifically microbial and stygofaunal components, are discussed
below in the context of aquatic GDEs. In the context of future work to review biological
indicators of subterranean GDEs, the review paper of Mammola et al. (2020) poses
expert-determined fundamental research questions related to subterranean GDEs and may
make a good starting place. Conservation related questions posed by the authors, e.g,, “What is
the impact of above-ground disturbance on subterranean environments and their fauna”
(Mammola et al,, 2020)highlights the limited work that has been done and the outstanding
gaps in our collective understanding of subterranean GDEs and their response to
anthropogenic activity. Additional literature review in future years will allow us to provide a
comprehensive review of biological components of subterranean GDEs and how they may
respond to groundwater changes in the OSR.

Precursory scanning of the literature regarding biological indicators in terrestrial GDEs in
Alberta and Canada resulted in papers focused on wooded riparian forests. Broadly, terrestrial
GDEs are often tied to the presence of phreatophytes, a term that describes deep rooted trees
and shrubs that can grow in dry environments by accessing sub-surface water and which have
high transpiration rates. Research examples from Alberta focus on cottonwood-dominated
riparian forests, where cottonwoods (Populus deltoides or Populus trichocarpa) are
phreatophytes, in semi-arid southern Alberta. These forests are reliant on groundwater,
especially during drought events (Tai et al,, 2018; Zimmerman et al., 2023), with similar patterns
observed in semi-arid to arid regions of the United States (Craup et al,, 2022). It is possible that
the related balsam poplar (Populus balsamifera), which occurs in the boreal, could be
indicative of terrestrial GDEs, although this species is widespread in mesic to hygric forests.
Cottonwoods, poplars and willows are considered keystone species for some Indigenous
peoples in Alberta, and their distribution is known to have changed along riparian areas, even
as recently as in the last 40 years.

Research specific to Alberta's boreal included mixed-wood forest stands on saline soils (trees
are typically intolerant of saline soil) in proximity to salt pans and saline wetlands, which are
likely GDEs (Lilles et al., 2010). Outside of Canada, the review of Chiloane et al. (2022) provides
an excellent starting place. The authors list indicators related to vegetation, including
phenology, advocate for the use of remote sensing in identifying terrestrial GDEs, and note
that “So far, groundwater-vegetation interaction monitoring has been limited by the trade-off
that exists between the costs, efficiency, and level of detail offered by the techniques
employed” (Chiloane et al,, 2022). Aside from vegetation, an assessment of microbial
communities found distinct differences between groundwater and geological material
samples, indicating that unigue communities occupy subsurface terrestrial environments
(Meyer et al,, 2022). Meyer et al. (2022) observed a decrease in bacterial and archeal abundance
and diversity with depth, but interpreting depth trends in eukaryotic microbial abundance was
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not possible due to low populations and sequence numbers in the deepest samples (approx.
50m).

A comprehensive literature review for biological indicators of terrestrial GDEs is scoped for
completion in future years, concurrent with mapping of these ecosystems.

431 Vegetation Indicators of Aquatic GDEs

Vegetation indicators of GDEs are inclusive of vascular and non-vascular plants. Generally,
vegetation is indicative of local conditions because individual plants are fixed in space and
must respond to local conditions. The literature regarding vascular and non-vascular plant
indicators for GDEs in Alberta and Canada is sparse. Springer et al. (2015) detected 25% of
Alberta’s native plant taxa in southern Alberta spring habitat. What may be most useful for
future GDE mapping efforts in the boreal that use existing datasets and map products is the
association of specific wetland types with groundwater. Among wetland classes in Alberta, fens
are, by definition, influenced by groundwater, whereas bogs are disconnected from it (AESRD,
2015). Fens occur along a gradient from poor to extreme rich, which is understood to align with
either or both the quantity or mineral composition of groundwater inputs (Vitt & Chee, 1990).
The influence of groundwater in swamps remains poorly understood but presumably present
(Elmes et al,, 2021).

Existing documentation of species that are associated with water exchange or richer fen types
can be leveraged when identifying GDEs within the boreal. In our study area, vascular and
non-vascular species including bryophytes such as rusty peat moss (Sphagnum fuscum) and
narrowleaf peatmoss (Sphagnum angustifolium), sedges such as few-seeded sedge (Carex
oligosperma), and shrubs such as leatherleaf (Chamadaphne calyculata) are associated with
bogs or very poor fens, while bryophytes such as small greasewart (Aneura pinguis),
three-ranked thread moss (Meesia triquetra), Knieff's hook-moss (Drepanocladus aduncus),
and Cosson's hook moss (Scorpidium cossoni [syn: Limprichtia cossonii), as well as sedges such
as tufted clubrush (Scirpus cespitosus), and flowering plants such as sticky false asphodel
(Triantha glutinosa) are indicative of alkaling, rich, wet fen types (Claser et al., 2004; Vitt et al,,
2022; Vitt & Chee, 1990). However, the use of vegetation indicators of groundwater influence
should be tempered by several factors. First, fen communities that are out of sync with
groundwater inputs can occur where surface runoff due to snowmelt is a substantial input
(Cooper & Andrus, 1994). Second, the boreal is dominated by a stress-tolerant, generalist
flora(Crisfield et al,, 2019) ; the flora that occupies boreal peatlands shows high fidelity to
peatlands, but single species or groups of species are rarely perfect indicators of specific
peatland types and their underlying groundwater conditions. For example, Larogue et al. (2016)
and Munger et al. (2014) investigated indicator species of groundwater exchange between a
peatland and an aquifer in Quebec, with Larogue et al. (2016) stating that “the identified
species (or combinations of species) do not have a 100% indicator value. There is a clear
tendency for the species to be indicative of groundwater inflow, but they are not perfect
indicators since an indicator species can be found in a peatland where there is no
groundwater inflow, and vice versa." (Larocque et al., 2016).

A species summary table provided by (Jeglum, 1991), who aimed to classify wooded peatlands
in Ontario using plant indicators, shows very few species being exclusively restricted to specific
peatland types. In a study focused on vegetation patterning and landscape evolution in the
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Hudson Bay Lowlands, the authors note that “no species were solely restricted to bogs'" when
assessing multiple peatland types (Glaser et al,, 2004). Instead, it is often the presence,
absence, and abundance of species within a community and species richness that together
discriminate areas of greater or lesser nutrient status, i.e,, groundwater input, and help to
distinguish among peatland conditions. An investigation of plant assemblages and water flow
from Sweden found higher species richness in areas of groundwater discharge, and that
discharge effectively extended the distance at which riparian conditions persist from lotic
systems (Kuglerova et al,, 2016). In a review, Land & Peters (2023)note that the richness of
aguatic vegetation tends to be greater in areas with groundwater inputs. Notably, aquatic
vegetation has been proposed as an indicator of reclamation progress in the OSR, where
aguatic indicator species have been shown to be responsive to salinity, water and sediment
nutrient levels, and alkalinity (Rooney & Bayley, 2011).

Patterns among bryophytes, i.e, non-vascular plants, inclusive of mosses, hornworts, and
liverworts, are consistent with those found in vascular plants, although bryophytes may display
relatively greater indicator value for specific peatland types (Vitt et al, 2022). Lehosmaa et al.
(2018) found that specialist aquatic bryophyte species declined significantly, but generalist
aguatic species did not, in the presence of contaminants in boreal spring ecosystems in
Finland. An interesting component of boreal flora is saline wetlands, which host a relatively
unique vascular plant species assemblage and a lack of bryophytes that is rarely found
elsewhere. Saline wetlands host species including flowering plants such as marsh samphire
(Salicornia europaea), saline plantain (Plantago eriopoda), and willow (Salix sp.), which are
rarely found in other wetland types, as well as grasses such as seaside arrow-grass (Triglochin
maritima), sweetgrass (Hierochloe hirta [syn: Anthoxanthum hirtum]), foxtail barley (Hordeum
Jjubatum), and Nuttall's alkali grass (Puccinellia nutalliana), which are found in other saline or
non-saline habitat types, including some uplands. As described in Wells & Price( 2015)saline
fens are exceptionally rare in boreal Alberta, typically found near rivers and, rarely, far from river
systems. Species occupying these saline systems have few observations across the boreal and
are therefore poor candidates for spatial modeling or generally for widespread monitoring
initiatives, but their observation can provide a clear indicator of groundwater influence or
otherwise unigue environmental conditions in the boreal.

4.3.2 Invertebrates, Microbes, and Stygofauna as Indicators of Aquatic GDEs

Animal and microbial taxa are critical components of GDEs, contributing substantially to their
functioning (Hancock et al,, 2005). To date, very limited work to document or relate faunal and
microbial components to groundwater attributes has been done in Canada. Examples from
Canada have sought to understand pattern in macroinvertebrate taxa within areas of
groundwater exchange in streams (i.e,, the hyporheic zone) in Ontario (Fraser & Williams, 1998;
Williams, 1993) and to characterize archaeal, bacterial, and eukaryotic community diversity and
structure in aquifers and their connected surface water in Quebec (Groult et al,, 2023). While
these taxa are currently understudied in relation to GDE, advancements in techniques
including genomic approaches, may provide effective monitoring opportunities.

It is expected that areas of upwelling groundwater should create niches for
macroinvertebrates, but research in this area is limited (Land & Peters, 2023).
Macroinvertebrate assemblages in the hyporheic zone in Ontario have not shown tight
associations specifically with either groundwater or surface water, suggesting community
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(Fraser & Williams, 1998; Williams, 1993). In Finnish boreal springs, macroinvertebrates were
shown to shift in taxonomic richness and community composition in response to
contamination from nitrates and to contamination from nitrates and increased dissolved
organic carbon from land drainage, respectively (Lehosmaa et al,, 2018). In Japan, a recent
study collected data of benthic invertebrates from literature on a global scale analyzing their
taxonomic and biological habitats and presented biological indicators to evaluate the degree
of dependency on groundwater springs (Sun et al., 2020).

Microbial commmunities in groundwater are unique relative to surface waters and are important
for biodiversity, nutrient cycling, including carbon cycling, and contaminant mobility (Land and
Peters, 2023). The work of Groult et al. (2023) in Quebec showed significant differences in the
microbial communities of aquifers and surface waters, assessed using an amplicon
sequencing approach, but the authors note that research in this area is in its infancy.
Groundwater ecosystem diversity, based on similar taxa discussed in Groult et al. (2023), was
assessed using eDNA sequencing in kettle hole wetlands in Germany, with the authors
concluding that this approach was useful for cross-domain biodiversity assessment, but
limited for single-taxa assessments (lonescu et al,, 2022). Febria et al. (2012) report that the
bacterial commmunity of the hyporheic zone of an intermittent stream in Ontario was
responsive to various groundwater parameters, including water intermittency, temperature,
and phosphate concentration. In a novel study relating macroinvertebrates, bryophytes,
periphyton, and bacterial ecosystem components of Finnish boreal springs to land use
intensity and groundwater contamination, Lehosmaa et al. (2023) found that bacterial
communities shifted in response to groundwater contamination. Bacterial communities were
assessed using DNA sequencing techniques (Lehosmaa et al,, 2018). Recent work
demonstrated that diverse microbial commmunities are widespread and surprisingly abundant
in Albertan aquifers, particularly in older and deeper groundwaters (Ruff et al., 2023).

Stygofauna is a collective term describing animal species that are adapted to and live within
groundwater. Generally, stygofauna are believed to be critical to groundwater ecosystems for
their role in trophic structure, mediating microbial assemblages, and bioturbation (Hose et al,
2022). Observations of stygofauna inhabiting caves and groundwater in Alberta is limited to
species descriptions from single locations near Rocky Mountain House and Castleguard Cave,
a Cambrian limestone cave near Banff (Bousfield & Holsinger, 1981; Holsinger, 1980). However,
stygofauna are better understood elsewhere, e.g., parts of Europe and Australia and have been
strongly supported as indicators of GDEs that are known to decline with declining water
quality (Hancock et al,, 2005). Stygofauna may be relevant indicators of groundwater-surface
water exchange. Research has identified that stygofauna may be both good indicators of GDE
and useful in measuring changes in groundwater contribution and quality in GDE systems
(Graillot et al,, 2014; Hose et al,, 2022). Stygofauna were used to identify groundwater upwelling
in a Swiss study seeking to improve integrative mapping of surface and groundwater
interactions. The authors used absolute and relative stygofauna richness, stygofauna
abundance, and the ratio of stygobite to epigean species as indicators of groundwater
presence, obtained from samples taken at 50 cm depths (Graillot et al,, 2014). Interestingly, they
found no significant correlation between hydraulic and groundwater fauna metrics, but found
“surprisingly good congruence of results” between them (Craillot et al,, 2014). The authors note
that the indicator value of stygofaunal metrics may be more limited in regions affected by the
most recent glaciations due to low presence of these species, although Holsinger (1980)
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posited that refugia for stygofauna may have been present in Alberta during glaciation. Finally,
Craillot et al. (2014) note that sampling time and identification of stygofauna require high effort
and expertise. A European-based global database providing stygofauna datasets from various
research and other investigation, Stygofauna Mundi, is now in operation, but currently has no
records from Canada and only a single record from the United States (Martinez et al,, 2018). In
Australia, eDNA has been proposed as a suitable approach for characterizing subterranean
stygofauna (Sacco et al,, 2022), in turn allowing for better understanding of subterranean
ecosystems where they interact with aguatic systems. In a review, Hose et al. (2022) describe
the utility of trait-based approaches to examining stygofaunal responses to change in
groundwater quality and quantity. The authors describe that stygofaunal traits tend to be
limited, with low variability, likely due to the immense selective pressure of their environment,
which makes these taxa highly vulnerable to change (Hose et al., 2022). Finally, an assessment
along a 40 km stretch of a large river in France concluded that stygobite fauna had the highest
richness and abundance in upwelling zones, were tied to river features such as meanders and
morainic hills, and showed little relationship with sediment size (Dole-Olivier et al., 2022).

Macroinvertebrates may be the most straightforward to sample, as several examples of
sampling technigues targeted to groundwater-associated species/communities are described
in the literature, although we note that some techniques require leaving sampling “pouches”
out for most of a calendar year. Macroinvertebrate expertise is also available within the ABMI.
There are some known macroinvertebrate data from the region (e.g., CABIN, OSM, ABMI, ECCC)
but the utility of the existing data for GDE applications has yet to be investigated. Microbial
and stygofaunal community sampling requires more complex sampling equipment that
allows the observer to penetrate the substrates (for the former, similar to groundwater
sampling methods). However, the literature does provide helpful guidance in understanding
microbial operational taxonomic units and stygofaunal genera found elsewhere. Expertise in
eDNA and DNA barcoding approaches is well established within InnoTech Alberta and the
University of Calgary. And there is ongoing collaborative groundwater microbiome research in
Alberta led by University of Calgary in collaboration with Environment and Protected Areas, the
Alberta Geological Survey and ABMI through the Alberta Innovates Water Innovation Program
(Ruff et al,, 2023).

4.3.3 Ecological Endpoints of Aquatic GDEs

The literature review underscored the importance of understanding GDEs as ecosystems,
which remains a novel concept in conservation. We currently lack enough understanding of
boreal aquatic GDEs to be able to characterize or speculate on how they may respond to
anthropogenic stressors, as we do not yet understand their components or interactions with
other ecosystems or higher order taxa, e.g., upland areas and mammals. This is highlighted, for
example, by Land and Peters (2023), who end their review with a call for research into the
relationships between biodiversity and stream and groundwater ecosystems (Land and Peters,
2023). These fundamental relationships are well understood, with decades of research and
documentation, for many above-ground ecosystems.

It is difficult to speculate on the potential vulnerability and responses of biological components
of aquatic GDEs to changes in groundwater quality and quantity with the current level of
understanding of them in Canada. The Nature Conservancy, in a guide for practitioners
seeking to determine groundwater thresholds for ecosystems, describes the importance of
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cause and effect chains when establishing groundwater thresholds (Rhode et al, 2020). These
chains are described for species that directly rely on groundwater, e.g., aquatic fauna like fish or
snails, and those that indirectly rely on it, e.g., birds or mammals that use riparian or
wooded/shrubby peatland habitat (Rhode et al., 2020). Fish depend on groundwater because it
provides stable temperature in the hot and cold extremes of temperate climates, maintains
ice-free areas in winter, and provides flow (Power et al,, 1999). As we gain insight into the extent
of groundwater reliance in boreal ecosystems, we can begin to establish these chains, i.e,
stressor-pathway-response relationships.

Licks are places where animals ingest mineral soil, a phenomenon known as geophagy. Licks
can be wet or dry; in an exploration of animal use of licks in northern British Columbia, Ayotte
et al.( 2006) explains that “Wet licks are associated with apparent groundwater springs. Dry
licks usually occur along streams or riverbeds, where unweathered deposits of soluble
elements have concentrated above less impervious layers, and become exposed by erosion”. In
northern Alberta, Indigenous Knowledge understands relationships between mammals and
licks, which are likely GDEs in many places, but little western science research has focused on
this topic. Mammals in the boreal likely utilize wet licks, which are agquatic GDEs. One example
from Alaska reported that "local observations suggest that... hare populations in areas with
known licks appear to reach higher densities during the population high compared to areas
where there is no known lick" (Worker et al,, 2015). Based on this, the authors used a captive
study that concluded that mineral soil appeared to allow snowshoe hares (Lepus americanus)
to minimize body mass loss, and they consumed more food when mineral soil was made
available to them (Worker et al,, 2015). From a stressor-pathway-response perspective,
groundwater drawdown in response to water withdrawals could reduce lick availability, which
could in turn affect the forage use and functional responses of mammals like hare or
moose(Ayotte et al., 2006;: Worker et al,, 2015). Indigenous insight into such relationships will be
invaluable going forward.

An interesting example from Germany also highlights potential ecological endpoints resulting
from change in groundwater. In brief, the authors speculated that groundwater-connected
pothole wetlands in natural grassland and forest areas would be closer to the natural,
pre-intensive agriculture conditions than those in agricultural fields. Instead, they found
evidence of biotic homogenization across all ponds, presumably a product of intensive land
use and landscape-level nutrient enrichment that was propagated across wetlands by
groundwater connectivity among them (lonescu et al,, 2022).

As per the conceptual model (Figure 1), it is possible that stressors such as landscape
disturbance, operational spills and leaks, and mine dewatering, may alter local groundwater
ecosystems in the OSR, and that these effects could be realized at the landscape level due to
groundwater connectivity, resulting in biotic homogenization as seen in lonescu et al. (2022),
i.e., negative effects to terrestrial and aquatic ecosystem health, but at this time we lack an
understanding of homo- or heterogeneity in GDEs in the boreal. Further, broadly speaking,
change in groundwater quantity may relate to or potentially advance peatland drying, which is
known to increase vulnerability to wildfire, alter carbon dynamics, shift species composition,
and alter the hydrological function of peatlands in their catchments such that stream flows are
ultimately affected (Goodbrand et al,, 2019; Miller et al,, 2015)). While climate change is known
to cause peatland drying in the boreal, anthropogenic factors (e.g., roads) associated with oil
sands development are also culpable (Miller et al,, 2015). The role of groundwater flow in
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promoting drying is an important area for further consideration, as this phenomenon may act
as a pathway causing change in terrestrial and aquatic ecosystems under the stress of reduced
groundwater quantity. Finally, it is likely that Indigenous Communities already hold knowledge
on groundwater relationships in the boreal, forming the basis for their often-expressed
concerns regarding landscape-level drying and a holistic understanding of water drawdown
affecting multiple ecosystemes.

5. Data Compilation

For this project, it was important to understand the broad set of data that could potentially be
used to inform mapping of GDEs in the chosen study area. Various data that were considered
for identifying the presence of GDEs are presented in Table 3. These datasets include data that
was collected in the field (e.g., hydrologic data, isotope analysis, water quality), geologic
mapping products, remote sensed data (e.g.,, DEM derived from lidar) and modeled data (e.g,,
Agquanty HGS output). Considering a broad set of data provided the best opportunity to
develop an approach to mapping that would negotiate the variability in resolution, the relative
value of the data in identifying GDE, and the availability of data.

Digital Elevation Models (DEMs) and flow-related data are important for providing the terrain
layout which influences hydrological processes, and how water moves and accumulates in a
landscape. Geological data including bedrock types and their permeability show where
subsurface conditions could affect groundwater storage and flow; this impacts the availability
of water to sustain GDEs. Groundwater data pertaining to water levels and chemistry help to
describe the physical dynamics and quality of the groundwater, which both impact and
indicate GDEs. Water use data gives a picture of human extraction patterns, which can alter
the availability of groundwater for GDEs. Landcover data, such as ecosite classification,
vegetation types, and historical forest fire record, provide context on biological diversity and
physical indicators that may influence the likelihood of GDE presence. Isotope sampling and
hydrometric monitoring from rivers and lakes provide data on the water cycle, which can
support estimation of the relative contributions of groundwater and surface water. Finally,
wetland mapping provides information on the types of wetlands present, which, by definition,
can indicate the presence of a GDE. Together, these datasets may be used to support the
mapping of GDEs but may also be useful for predicting risk and vulnerability of GDE to oil
sands-related impacts.

We also requested thermal imagery from both ECCC studies from the McKay River and COSIA,
however that data will not be available for broader use, including for GDE mapping, until
2024/25.

Table 3. Types of data that were considered with their purpose. A full list of all the datasets
considered is found in Appendix D.
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Category Data Type Purpose
DEM, Flow Terrain analysis for hydrologic
Accumulation/Direction studies
Geography
Slope, TWI Surface_ inclination and wetness
evaluation
Quaternary Units, Bedrock, Ceological composition and water
Geology . T .
Permeability transmission analysis
GCroundwater Hydraulic Head, Chemistry Groundwater pressure and quality

assessment

Groundwater &
Surface Water

Water Use Data

Monitoring of water usage

Ecosite Classification, Fire

Ecosystem classification and

Inventory of OSM Area

Landcover Polygons post-fire land assessment
River & Lake Water Quahty, Isotope' Water source study and flow
Sampling, Hydrometric
Surveys o measurement
Monitoring
Wetland Monitoring Wetland water quality monitoring
Wetlands

Wetland mapping and study

This dataset (Table 4) is made up of various types of acquired geographical, geological,
groundwater, landcover, and wetland information pertinent to the boreal region’s aquatic
GDEs. This multi-variable dataset, acquired fromm multiple organizations, ranges from point and
line data to more complex rasters and polygons. Geography parameters were available for the
analysis area, and are also available for the broader oil sands region. Geology data is mostly
available throughout Alberta, however, more detailed information was available for some parts
of the analysis area, and availability at the scale of the oil sands region is patchy. There is a
concentration of groundwater data available in the oil sands region, when compared to other
areas of boreal Alberta, due to energy sector monitoring and targeted work by the ACS and
others. Landcover data like soils and ecological classification is in general more detailed in

Southern Alberta, when compared to that available in the oil sands region. There is relatively

good coverage of river and lake survey data in the oil sands region.

Table 4. Summary of the data compiled to support the GDE mapping approach.
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Date of

. Data collection/ | Type of
Category Data Name Description cource oublishin | data
g
) Measures the annual .
éggg;l unit amount of runoffin a GOC 2013 Eilgt’
unit area.
Digital Elevation
Model (DEM) - 3D representation of a
Advanced Land terrain's surface created | JAXA 2015 Raster
Observing from satellite data.
Satellite (ALOS)
Flow Indicates the
Accumulation - accumulation of water JAXA 2015 Raster
ALOS Derived flow across a surface.
GCeography . S Shows the direction of
Zlfg)VSDtl)reeric\fle%n water flow derived from | JAXA 2015 Raster
elevation data.
Hydrologic Unit Codes Polvao
HUC 8,10 that identify GOA 2024 - Y9
hydrological features.
Slope - ALOS Mgasgres the steepness 3 5015 Raster
Derived or incline of a surface.
Topographic Predicts the
accumulation of water aster
?/Tv\fvtlr)‘_eig‘sdex lation of IAXA 2015 R
Derived in a geographic area.
Paleogeography, | Studies historical Point
Evaporite geology related to salt AER/AGS | 2020 Re o’rt
Karstification cavern potential. P
Bedrock (Map Maps the distribution of Polygo
600) bedrock. ACS 2013 n
Geol Modeled Surfaces Rgslroesiecr;ﬁscghri osition Raster
eology and Unit Picks of | 95999 posit AGS 2023 SLer,
Quaternary Units of Quaternary unitsin Point
Y NAOS.
Sediments above
. . bedrock known or
AQ u4|fer Hosting inferred to contain AGS 2023 Polygo
Sediments n

aquifers (sand, gravel, or
water supply wells)
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Date of

o Data collection/ | Type of
Category Data Name Description cource oublishin | data
g
Sg{\?ee(jﬁgx ) Indicates the capacity of Polvao
) rock materials to AGS 2013; 2022 Y9
geological . n
- transmit water.
materials
Surficial
geological maps M:Oﬁzthe surface AGS 2013 EOIng
(bedrock) geolody.
Surficial
geological maps
begood - |MeERnesrce L acs [wm [Pl
updated - Maps 9 9y 9 '
618-621
Integrated
Surface Simulates water table
Water-Groundwa | depthsand OSM, 5022 Raster,
ter Model for the | groundwater flows. Agquanty Point
Athabasca River (Aquanty/HGS)
Basin
Provides estimated
elevation for the base of
Groundwater the deepest formation :
Protection Data that is likely to contain AER 2016 Point
non-saline
Groundwater groundwater.
Total Dissolved lcr;?wlgg;etfattTOGH of
Solids ) ! AGS 2021 Raster
S dissolved substances in
Distribution
groundwater.
Distribution of
Hydraulic Head in
the Peace River/ | Measures the pressure
Viking / Bow exerted by groundwater | AGS 2021 Raster
Island at various locations.

Hydrostrati-graph
ic Unit
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Date of

o Data collection/ | Type of
Category Data Name Description cource oublishin | data
g

Map 596
(Distribution of .
ToalDsoved | DO
Solids in the . ! AGS 2020 Raster
Grand Rapids dissolved substances in
Hydrostrati-graph groundwater.
ic Unit)
Map 597
(Distribution of
Hydraulic Head in Measures the pressure
the Grand Rapids exerted by groundwater | AGS 2020 Raster
Hydrostrati—g?aph at various locations.
ic Unit)
Map 612
(Distribution of .
TolDsoed | (O
Solids in the . ! AGS 2021 Raster
McMurray dissolved substances in
Hydrostrati-graph groundwater.
ic Unit)
Map 613
(Distribution of
Hydraulic Head in Measures the pressure
the McMurra exerted by groundwater | AGS 2021 Raster
Hydrostrati—g{aph at various locations.
ic Unit)
Operators/ElAs Chemical analysis of
G\F;\/ Chemistr groundwater by Various 2021 Point

Y operators or ElAs.

Water level
\C/szfi;artfer\s//eilAs measurements taken Various 2021 Point
by operators or ElAs.

Spring Compiles locations and
Compilation data of springs AGS 2014 Point
(AGS) '
Spring Compiles locations and
Compilation P . InnoTech | 2022 Point
(InnoTech) data of springs.
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Date of

o Data collection/ | Type of
Category Data Name Description cource oublishin | data
g
Depicts the path of the
Thalwegs deepest part of a AGS 2018 Line
stream or valley.
2022 Water Use Data on the usage of AER 5022 Polygo
Groundwater | Data water resources. n
and Surface
Water Water Quality Croundwaterand OSM 20162022 | Point
surface water chemistry.
Eco_AB_10TM - 4 | Provides scales of Agricul-t Polygo
: . . ure 2021
scales of ecosite ecosite classification. n
Canada
Includes various layers
Ecosystem Based | related to land ABM| 5022 Polygo
Management management and n
Landcover classification.
Forest Fire Maps the areas affected AEP 5022 Polygo
Polygons by forest fires. n
Soil Landscapes Maps the dlstr|but|on Agricul-t Polygo
of Canada and types of soll ure 2011 n
landscapes in Canada. Canada
Collects data on ISO-ABM
Isotope Sampling | isotopes for water I 2009-2018 | Point
sources studies. InnoTech
SAg/lsmetric Locations where water
River and yarom level and flow are RAMP 2017 Point
Monitoring .
Lake Surveys . monitored.
Locations
RAMP Water
Quality Surveys to measure and
7 track long-term water RAMP 2017 Point
Monitoring ualit
Locations 9 Y-
. Delineates zones of
Electromagnetic . .
Terrain groundwater pore fluid | Advisian, Raster
River Surveys . in river bottom InnoTech, | 2014, 2015 S
Conductivity ! . Point
. sediments with OSM
Mapping

elevated salinity.
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Date of
o Data collection/ | Type of
Category Data Name Description cource oublishin | data
9
Water Surveys to measure and
- track long-term water AEP 2023 Point
quality/LTRN .
quality.
Measures the volume of
WSC/RAMP . water flowing through WSC 2023 Point
Stream Gauging .
rivers.
V\/etlanql Monitors the quality of .
Monitoring ! Point,
surface water in OSM 2022
Surface Water Table
Wetland Oualit wetlands.
Surveys Y
OSM Wetland Inventory area for pilot ABMY/
Inventory Pilot studies on wetlands DUC 2022 Raster
Area using OSM data.

There were multiple data sources that would have been useful in the GDE approach that was
applied in the area of interest, or which could have supported other approaches. Some key
gaps include the McKay River Integrated Surface Water-Groundwater Model, hydraulic head
maps, and higher resolution thermal data; all of which are continuing to be pursued (Table 5).
InnoTech Alberta will continue to work to gain access to the output from the McKay River
model, improved hydraulic head majps for quaternary aquifers may be available from AGS in
2024/25 for a portion of the oil sands region, and thermal imagery access opportunities from
additional sources will be further explored. InnoTech Alberta is discussing opportunities to
access data collected by the Fort McKay Métis Nation to support future GDE mapping
initiatives; focus of discussions includes clarity on data protection and management, data use
limitations, and requirements to support community interests in sharing back outcomes.

Table 5. Ongoing gaps in data availability that could potentially contribute to enhanced GDE

mapping.

Data Type

Description

Biological data

Biomass, species, diversity, population, and productivity

Climate data

Information on climate patterns
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McKay River Integrated GIS model outputs, including groundwater levels and
Surface Water -Groundwater surface water - groundwater interactions, are needed from
Model EarthFX

Airborne or satellite derived thermal data at a higher

Higher resolution thermal data resolution than what is available through GEE

Hydraulic head data may be available from AGS,

Hydraulic head maps particularly for the quaternary units, at a later date

Only two points near the AOI, data would need to be

LTRN Data is outside of our AOI .
acquired.

Surficial and near-surface karst | Not much info available in the OSR for surficial or

mapping subterranean karst feature mapping
Springs Additional locations of springs
Temporal resolution data Lack of time series data

o. Literature Review: Methods for Mapping
GDEs

Clobal approaches to GDE mapping have been limited to date, however, with the rise in
population and economic growth, strain on water resources may drive an increased need for
national or multinational approaches. The mapping of GDEs has been identified as important
to support both ecosystem protection and human health. Sacco et al. (2024) found that ~75
percent of the global land surface has an interaction with groundwater resources when high
mountain and desert terrain are excluded. Additionally, the authors draw attention to the
transboundary nature of groundwater and the impact of declines on surrounding biodiversity
and human water needs (Sacco et al,, 2024). As demands on groundwater resources via
human abstraction intensifies, the need for reliable GDE mapping will increase to enable use
of these systems as critical proxies of aquifer health. Link et al,, (2023) globally grid-mapped key
GDE potentials, with indicators related to GDEs based on type (streams, wetland, vegetation)
and further refined using 16 GDE indexes. These were coupled with stressors to groundwater
and used to highlight regions where GDEs are predicted to be at a higher risk of impact.
Although globally mapped northern hemisphere regions show lower risk scores in remote
areas, regions with higher human footprint reflect higher GDE impact risk, showing the need
to better map GDEs in less disturbed areas that have potential of being impacted by
groundwater withdrawals as they are developed (Link et al,, 2023). Global-scale mapping is
primarily limited to low resolution approaches to date, for instance these authors used a spatial
resolution of 0.5°. For local and regional-scale monitoring, higher resolution outputs are
required.
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Building foundational knowledge around the occurrence and locations of different types of
GDEs within the OSR that can support groundwater monitoring efforts and stressor-response
pathways, requires accurate and spatially comprehensive regional-level mapping. The
methods used to map GDEs vary according to the category of GDE being mapped (i.e,
terrestrial, aquatic, or subterranean). Existing efforts have largely focused on terrestrial and
aquatic GDEs and can rely on indicators visible or measurable at the surface (e.g., water
chemistry, phreatophytic vegetation). Subterranean GDEs, however, require an alternate
approach that focuses on less easily observable subsurface factors including geology, lithology,
and structure. As is the case for previous sections, the following focuses on data and
approaches used for mapping aquatic GDE systems.

Aquatic GDE identification can come from a variety of indicators. For instance, the review of
surface water expressions (e.g., springs, seeps, wetlands, riverine systems) for signs of links with
groundwater discharge, or data on surface water temperatures and chemistry, are used to
infer GDE occurrence. Using these data to understand the hydrogeological foundation of an
area is a common approach to GDE mapping (Martinez-Santos et al., 2021; Sacco et al, 2024),
and can also be complemented by the use of biological indicators, such as through
comparisons with ecological responses (e.g., wildlife or vegetation communities linked with a
reliance on water table levels (Doody et al,, 2017; Link et al.,, 2023). Often such data are collected
directly on the ground and are only available for a limited number of discrete locations across
an area due to the high costs of acquisition. For this reason, the use of remote sensing datasets
and geospatial technology have become important tools for broader-scale, spatially explicit
GCDE mapping as they can offer comprehensive, larger-scale, repeating views of the Earth'’s
surface at a fraction of the cost of ground-based data collection.

Within the context of mapping GDEs, progress in their delineation and detection have
drastically improved with advances in remote sensing technology and computational power,
and range from simple spatial analysis methods combined with expert opinions (Doody et al.,
2017), to a greater reliance on computing power using machine learning approaches to map
GCDEs (Fildes et al,, 2023;: Martinez-Santos et al., 2021; Rohde et al,, 2021; Rosa et al,, 2023). The
following sections first describe remotely-sensed datasets that are most commonly used for
mapping GDEs, and then summarize three types of mapping approaches in which these
datasets are typically used.

6.1.1 Remote Sensing Data

There are two main types of remotely-sensed data that are found to be particularly useful for
mapping GDEs: spectral vegetation indices, and thermal imagery. The following sections
introduce these two types of datasets, describe their use in various jurisdictions for mapping
GDEs.

Spectral Vegetation Indices

Much of the published mapping efforts that leverage remote sensing data have focused on
arid and semi-arid regions, where differences in vegetation vigor (e.g., greenness) are notable
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between more hydrologically-stable, greener aquatic or terrestrial GDEs, such as wetlands or
riparian areas, and drought-prone non-GDE systems. Under these conditions, remote sensing
approaches are able to rely on spectral vegetation indices (SVIs) that often combine visible red
and near infrared wavelengths, which respond to levels of vegetation health or vigor. Popular
SVls used for this purpose include the Normalized Difference Vegetation Index (NDVI), and the
Normalized Difference Wetness Index (NDWI). GDEs remain more vegetatively green
throughout the year because of their more consistent supply of water, even during dry
seasons, and these indices leverage this phenomenon. Additional SVIs that have also been
used for the detection of both aquatic and terrestrial GDEs are listed in Table 6. While these
indices may leverage different spectral bands or different combinations of bands, these are
nevertheless more often utilized for detecting GDEs within regions where the differentials
between the source of water (surface water vs. groundwater) are distinct in nature (i.e, arid,
semi-arid regions). In these environments, higher contrasts can be found between ecosystems
receiving consistent hydrological sources (e.g., GDEs) and those which have high seasonal
variation in water availability (Fildes et al,, 2023: Martinez-Santos et al., 2021; Rohde et al,, 2021).
While SVIs like NDVI or NDWI are particularly useful in arid and semi-arid regions, additional
data sources are also used in combination with these to support GDE detection and mapping.
Such ancillary datasets with information on: geology, lithology, piezometric surfaces, elevation,
slope, aquifer permeability, soils, and flow accumulation potential (e.g., Martinez-Santos et al,,
2021).

Table 6. List of spectral vegetation indices used in the remote sensing-based mapping of
GDEs.

Spectral Index Recent Publications Using the Index

Rohde et al. (2021); Martinez-Santos et

Normalized Difference Vegetation Index (NDVI) al. (2021); LaRocque & Leblon (2022)

Normalized Difference Vegetation Index (NDVI) -

Coefficient of Variation (NDCVI ypu) Fildes etal. (2023)

Normalized Difference Vegetation Fractional Cover
Photosynthetic Vegetation - Coefficient of Fildes et al. (2023)
Variation (NDCVI py rc)

Difference Vegetation Index (DVI) LaRocque & Leblon (2022)
Creen Difference Vegetation Index (GDVI) LaRocque & Leblon (2022)
Creen Ratio Vegetation Index (GRVI) LaRocque & Leblon (2022)
Normalized Green (NG) LaRocque & Leblon (2022)
Normalized Near Infrared (NNIR) LaRocque & Leblon (2022)
Normalized Red (NR) LaRocque & Leblon (2022)
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Red Simple-Ratio Vegetation Index (RVI) LaRocque & Leblon (2022)

Enhanced Vegetation index (EVI) Rohde et al. (2021)

Normalized Difference Aquatic Vegetation Index LaRocque & Leblon (2022)

(NDAVI)

Normalized Difference Moisture Index (NDMI) Rohde et al. (2021)
Normalized Difference Water Index (NDWI) Rohde et al. (2021)
Normalized Burn Ratio (NBR) Rohde et al. (2021)

Normalized Difference Evapotranspiration (NDET) Fildes et al. (2023)

Near Infrared reflectance of Vegetation (NiRv) Rohde et al. (2021)
Soil Adjusted Vegetation Index (SAVI) Rohde et al. (2021)
Water Adjusted Vegetation Index (WAVI) LaRocque & Leblon (2022)

Tasseled Cap (TCAP) derivatives: Brightness,

Creenness, Wetness, Angle Rohde et al. (2021)

Thermal Imagery

Groundwater-surface water interactions often involve distinct water temperature differences
between the two water sources. While groundwater retains a steady temperature throughout
the year as it is insulated from surface seasonal and daily atmospheric temperature changes,
the temperatures of surface water vary with the seasons and local weather conditions (e.g.,
amount of incoming solar radiation, levels of precipitation, etc.). Thus, depending on the time
of year, groundwater can be much cooler than surface water or vice versa. Variations in water
temperature can be used as an indicator of groundwater presence, and have even been
leveraged for empirically quantifying groundwater-surface water interactions and fluxes
(Anibas et al,, 2011; Klgve et al,, 2011). Examining spatial variations in water temperatures lends
itself well to remote sensing approaches - levels of thermal infrared energy is commonly
captured using a variety of space-based, airborne, drone-based, or handheld sensors and
cameras.

Ala-aho et al. (2015)used airborne thermal images captured from a helicopter over an
unconfined aquifer study area in central Finland, to manually identify temperature gradients
along a lake shoreline. From these they identified locations of groundwater inflow into the lake,
which were used to validate a fully integrated hydrological model of water fluxes in the area.
Isokangas et al. (2017)similarly use helicopter-based thermal imagery and temperature
thresholds to delineate locations of groundwater seepage in a Finnish peatland. They
compared this with the outputs of an isotope mass balance mapping approach and showed
success in mapping groundwater contributions to peatland pore water in the area. Both Autio
et al. (2023) and Watts et al. (2023) leverage newer drone technology to capture local and
highly detailed thermal image mosaics of wetlands in northern Finland and Massachusetts,
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U.S.A, respectively. The former show that temperature anomalies identified through manual
and threshold-based delineation from thermal imagery can align well with the stable water
isotope-based identification of groundwater seeps, and with a physically-based flow model of
the area (Autio et al,, 2023). The latter used thermal imagery for more than model validation,
however, mapping groundwater seeps with drone-based thermal imagery both pre- and
post-restoration to show the successful removal of barriers to surface expression at the site
(Watts et al,, 2023).

Using thermal imagery to identify groundwater-surface water interactions and therefore the
GDEs that accompany them shows great potential in the literature. However, as is the case for
other approaches, it does not come without its limitations and challenges. For instance, the
time of year and time of day at which the thermal imagery is captured are both important for
ensuring maximum temperature differences between different water sources to enhance
attribution ability. That is, times of year and day when surface water is at its coldest or hottest in
comparison to more stable groundwater (e.g., mid-winter or late summer; evening, early
morning) should be selected so as to maximize groundwater detection. Thermal imagery also
requires significant amounts of calibration and processing post-acquisition if actual water or
surface temperatures are being extracted and, even with careful post-processing, variabilities
across images can come from weather conditions, camera angles, within-waterbody
temperature stratification, differing vegetation thermal properties, etc. (Autio et al,, 2023;
Isokangas et al., 2017; Watts et al,, 2023) .

Remote Sensing Mapping Approaches

Approaches leveraging remote sensing for the mapping of GDEs are divided into three main
types of methods: integrated hydrological modeling, suitability /risk mapping, and machine
learning approaches. Each of these is described in more detail in the sections below, with
approaches used in the boreal identified.

Integrated Hydrological Modelling Approaches

The combination of fully-integrated hydrological models, isotopes, and thermal mapping has
shown promise for determining GDEs over a relatively small catchment (approximately 100
km?) in peatland environments, but lacks the spatial capacities of larger regional studies due to
cost (Ala-aho et al, 2015; Autio et al., 2023; Eskelinen et al,, 2015). Despite these advances,
mapping GDEs within peatland regions is still hindered by the low variability in vegetation
vigor, and therefore spectral vegetation properties as seen in arid or semi-arid areas, due to the
relative hydrological stability in more humid peatlands. Furthermore, despite the availability of
open access satellite-based thermal imagery for larger-scale mapping, the lower resolution of
these data (i.e, = 60 m pixel sizes) makes the detection of smaller GDEs more difficult and the
delineation of larger GDEs less exact. Most studies which have utilized thermal imagery as a
mapping approach in peatlands are typically small in nature and leverage high resolution
drone thermal infrared imagery to detect groundwater seeps on the landscape (Isokangas et
al, 2017; Watts et al,, 2023). This approach would not currently be feasible for larger-scale
applications (e.g., across the OSR).
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Suitability Mapping Approaches

Suitability maps have been used to identify terrestrial and aquatic GDEs in both arid and
boreal settings (Doody et al., 2017; Eskelinen et al,, 2015; Kuginis et al,, 2016), and typically rely on
three major remote sensing data groups: vegetation community mapping and associated
data (e.g. NDVI, NDWI), groundwater levels, and layers pertaining to aquifer types and soil
parameters (Eskelinen et al,, 2015; Doody et al,, 2017). These approaches rely on a workflow that
uses user-defined scores and decision rules to normalize variables. Users then assign weight
relative to each variable, which calculates the likelihood that any given location within an area
of interest is a. These methods are susceptible to bias from experts in assigning weights, and
do have limitations with regards to only having confirmed (positive) points, which can
influence computational power in regions with sparse data availability (Doody et al,, 2017; Fildes
et al, 2023; Malczewski, 2004).

Within the context of a national approach for mapping GDEs in Australia’s arid environments,
Doody et al,, (2017) follow a workflow incorporating 7 methodologies:

e aliterature review involved assessing 200 reports from Eco-Hydrological Zones (EHZ)
and expert consultation;

e collation of continental spatial data with the division into 57 eco-hydrogeological zones
fundamentally based on climate, geology, and groundwater flow systems;

e the development of rules on groundwater dependency, based on both literature and
expert consultation to determine the criteria required for GDE systems;

e collation of vegetation and hydrological spatial data (e.g., locations of wetland, river,
springs), in conjunction with remote sensing derived products (MODIS satellite imagery
at a 250 m resolution, to make inflow dependent ecosystem products);

® an assessment of where spatial layers intersect with locations classified as potential
GDEs (e.g., surficial geology and vegetation features);

e the normalization and weighting of developed rules, based on expert opinions; and

e calculation of GDE potential across the area of interest, based on expert-derived rules
multiplied by the weightings, and divided by the sum of total weightings.

The validation of GDEs within this Australian study required the utilization of “known GDE"
locations garnered from previous literature, with the assumption that they were highly
accurate in nature, and also depended heavily on expert opinions (Doody et al. 2017). Some of
the limitations of using this method were the broadness of the study, resulting in lower spatial
detail in the detection of GDEs, and challenges with knowledge gaps, where mapping layers
did not overlap within all regions. Expert opinion was heavily relied upon in both the validation
approaches and in initial data sourcing (Doody et al., 2017). The heavy reliance on vegetation
data to corroborate GDE presence, in conjunction with large dependence on expert opinion,
makes it more difficult to apply this methodology within the boreal region.

The use of GDE likelihood mapping within boreal peatland in Finland by Eskelinen et al.,, (2015)
shows some promise for use within the boreal, despite the small scale of the study. Mapping a
relatively small catchment area of approximately 7 km?, Eskelinen et al. (2015), used a
methodology that relied more heavily on hydrological inputs and models (Darcy’s Law for flow,
and Hydrogeosphere (HGS) for model validation), and leveraged the following inputs:
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e Slope, utilizing Darcy’s Law, whereby hydrological flux is dependent on discharge area
and hydrological gradient (Freeze & Cherry, 1979)), with verification from a previous
study in the region verifying that groundwater level within an esker peatland system
followed the topographic plane (Rossi et al., 2012).

e Natural spring systems were used as a metric for areas which might have
discontinuous geological structures allowing for groundwater seeps to be assigned a
higher potential of being a GDE; this was done in a stepwise function (100 m) to a total
of 1 km distance. Inversely, the probability of discharge was reduced at 500 m intervals
until 3 km from the boundary of the recharge area.

e Peat thickness, as a function of interpolations between measurements with likelihood
determined at slope, divided by the inverse peat thickness layer.

Validation of the models were conducted using two methods: (1) field assessments of known
GDE points with existing base flow measurements and 15-cm LIDAR digital elevation model
delineations over two years; and (2) the use of HydroGeoSphere groundwater modeling
software based on Ala-Aho et al. (2015), which describes a fully integrated groundwater model
(Eskelinen et al,, 2015). Of the two models generated, the model using basic inputs (i.e, slope
and springs) had good predictive abilities and resolution, while including the third input (i.e,
peat thickness) increased GDE detection resolution in areas with data, but lowered resolutions
in regions lacking accurate data and increased computational demands (Eskelinen et al,, 2015).
The use of likelihood maps for mapping of GDEs with the boreal has potential. However, the
reliance on detailed spatial data, and hydrological modelling inputs (detection (Darcy's law)
and validation (HGS)) might limit the accuracy of GDE predictions in areas that lack substantial
data coverage and high-quality data layers.

Machine Learning Approaches

There have been marked improvements in the use of machine learning approaches
combining multiple data sources to detect GDEs, which enable the processing of large
amounts of remote sensing and other geospatial data (Rampheri et al., 2023). Recent studies
focused on leveraging the use of machine learning in the mapping of GDEs in both arid and
boreal environments. Within these studies, model variability ranged >20 with the most
common machine learning algorithms being random forest, support vector machine, artificial
neural network, naive Bayes classification, and maximum entropy modeling. This section will
review three papers in depth. Of the three studies reviewed, most implemented tools and
packages for common geospatial rendering software including QGIS - MLMapyper 2.0
(Martinez-Santos et al,, 2021), Google Earth Engine - Shallow Groundwater Estimation Tool
(SAGE) (Rohde et al. 2021), and Maxent software
(https:/biodiversityinformatics.amnh.org/open_source/maxent/, Gerlach et al,, 2022. The
following paragraphs describe some of these methods in more detail.

Within the context of arid and semi-arid environments, Martinez -Santos et al. (2021) developed
and employed the ML Mapper tool - a multi-layered supervised classification approach that
leveraged several data layers to map GDEs within a 6100 km? groundwater aquifer system in
Spain, similar to the size of our Study Area. Their approach utilized the following explanatory
inputs in the MLLMapper software: a digital elevation model (DEM), a piezometric surface,
topographic wetness index, slope, NDVI, flow accumulation, geology, aquifer permeability, and
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soil type. These were each broken into 4-5 subclassifications typically ranging from very low to
very high potential for GDEs, with quantifiable metrics such as slope, groundwater table, NDVI
classed into numerical bins. The approach then trains, tunes, and cross-validates a multitude of
machine learning algorithms simultaneously. These include: support vector machines (SVM),
linear vector machines (LVM), logistic regression (LRG), decision tree classifier (CRT), random
forest classifier (RFC), K-nearest neighbor classification (KNN), linear discriminant analysis
(LDA), gaussian naive Bayes classification (NBA), multilayer perceptron neural network (MLP),
ada-boost classifier (ABC), quadratic discriminant analysis (QDA), gradient boosting
classification (GBC), gaussian process (GPC), ridge (RID), stochastic gradient descent linear
classifier (SGD), perceptron (PRC), nearest centroid classifier (NCC), multinomial naive Bayes
(MNB), complement naive Bayes (CNB), and extra-trees classifier (EXT). This allows for both
low-suitability models and collinearity between variables to be excluded, and for the effective
leveraging of multiple spatial input layers in one pass.

Model tuning and validation includes automated parameter tuning using 10-fold
cross-validation, and the removal of counterproductive and redundant variables. The authors
used a 50/50 training vs. test data split in this study (Martinez -Santos et al., 2021), with 150 total
reference data points split into 75 known points over the 6 major wetlands, and the remaining
75 points spread over non-GDE points across the aquifer. The MLMapper plugin allows the user
to extrapolate the results to produce a predictive map. Martinez-Santos et al. (2021) found that
tree-based classifiers (e.g., RFC, EXT), in addition to LRG, SVM, and KNN all performed well in
their ability to map GDEs in their study area. The highest model confidences were produced by
the tree-based classifiers and the use of only 4 explanatory variables: DEM, lithology,
permeability, and water table elevation. This method, MLLMappper, has the potential to be
useful for mapping GDEs in the boreal as there is less dependence on vegetation derived
indices, and more of a focus on hydrological and hydrogeological factors (wetlands, lakes,
stream, water table, lithology, permeability). This makes it an ideal choice when combined with
its high computational capability to leverage multiple geospatial input layers at once.

Google Earth Engine (GEE) and machine learning have been used to map terrestrial and
aqguatic GDEs in California, alongside risks associated with groundwater level changes. Rohde
et al. (2021) leveraged random forest modeling to assess risk for GDEs in groundwater level
changes. The methodology used a number of inputs, divided into two types of variables:
dynamic or categorical. Dynamic variables included: groundwater elevations from shallow
wells over multiple years (roughly 55.6K sample points total), and GDE maps based on
vegetation indices derived from Landsat data. The indices used were: NDVI, NDMI, NDWI,
Normalized Burn Ratio NBR, NiRv, SAVI, EVI, and TCAP indices (see Table 6). GDE mapping also
employed a downscaled climate surface (NASA's Daymet; https:/daymet.ornl.gov/) for
predictions of climate. Both the Landsat and climate data were fed into a temporal
segmentation, which distributes the data into time series segments feeding into the model.
Categorical variables used by Rohde et al,, (2021) included: watershed boundaries at a HUC 8
level, hydrological region, ecoregion, and vegetation typing. Both categorical and dynamic
variables are fed into a random forest machine learning model to detect risks of groundwater
level changes on local GDEs (2021).

The results of the study leveraged large data sources to map GDEs to demonstrate how
machine learning can inform risks to GDE once they are successfully mapped. Although this
approach is ultimately assessing GDE risk to groundwater fluctuations and not directly
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mapping them, a similar method has been incorporated into a study mapping GDEs across
the globe with a random forest approach. The latter is set to be published in the spring of 2024
(M. M. Rohdes, personal coommunication, January 23, 2024). This new approach has not been
used to map boreal Alberta but has mapped approximately 61,600 km? of southern Alberta
prairie pothole region (Nature Conservancy & Desert Research Institute, 2023), which
exemplifies the power of GEE and machine learning for scaling up GDE mapping efforts. This
approach could be suitable for the boreal region in the future, depending on data availability.

Mapping of GDEs across landscapes, like all predictive modeling, requires validation, preferably
using independent data or methods. These data can range from known GDEs points from
previously studied areas ranging from known seeps such as springs, wetlands, reaches of river,
and lakes system to informative point source data like stable isotopes and geochemistry
(Doody et al,, 2017; Eskelinen et al,, 2015; Fildes et al., 2023; Gerlach et al,, 2022, Isokangas et al.,
2017, Klausmeyer et al,, 2018; Lidberg et al., 2020; Martinez-Santos et al,, 2021, Rohde et al., 2021).
These known points within a machine learning approach serve as an important source of
training data for the models and highlight the need for both positive (known GDEs) and
negative (non-GDE) points for both training and model verification (Lidberg et al.,, 2019;
Martinez-Santos et al,, 2021; Rohde et al,, 2021; Fildes et al., 2023). There is also the potential for
Indigenous communities to support identification of known GDEs such as seeps, salt licks, and
other prominent groundwater features to assist in mapping efforts to be used as additional
training or validation data, with limitations on data use and protection that reflect community
requirements.

Much of the effort using remote sensing to map GDEs has focused in arid and semi-arid
environments, like Australia or drier portions of the U.S.A., where differences in vegetation vigor
are noticeable between GDE and non-GDE environments because the former maintain some
level of green vegetation given their more stable access to groundwater. SVIs are particularly
useful for mapping these systems. Unlike arid or semi-arid regions, however, more humid
boreal regions at higher latitudes must rely on alternative approaches that often leverage local
biotic or abiotic context. With high-latitude climates like the boreal forest, reliance on methods
that are dominated by NDVI and dependencies on phreatophytes (deep rooting plants) are far
less efficient, posing a challenge as water availability (surface and groundwater) is sufficiently
high so as not to cause high amounts of water stress outside GDE systems, thereby making
negligible contrast in vegetation vigor between CGDE and non-GDE systems. The mapping and
detection of GDEs in high-latitude boreal areas has begun to grow as concerns around water
security and anthropogenic impacts on these systems increase (Klgve et al.,, 2011). Some of this
work has centered around the use of thermal imaging from helicopters and drones, in
conjunction with stable isotopes (*H, '®0), as tools for accurately identifying where GDEs are
present (Isokangas et al., 2017). While these approaches have shown good performance in
Finnish examples (Ala-Aho et al, 2015; Autio et al,, 2023), they are limited in their spatial extent
as they rely not only on ground-based isotope sampling, but their helicopter- and drone-based
approaches cannot be scaled easily to a large area. As an alternative approach, machine
learning has played an important role in mapping GDEs in other jurisdictions.
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Lidberg et al. (2019) implemented machine learning to map the wet areas of a boreal forest
landscape in Sweden (an area of 450,295 km?). An important challenge of mapping these
ecosystems in this area is that the region is dominated by peatlands and dense forests, where
visible differences between GDEs and non-GDE areas are less distinct. Model inputs included
average soil moisture regimes according to the Swedish national forest inventory, using the
following categories: dry, mesic, mesic-moist, moist, and wet. As peatlands such as fens
typically have high water table heights close to the surface, soil moisture information can be
useful for predicting areas which would have higher potential to be GDEs. The model also used
inputs from a national digital elevation model (DEM) at 2 m resolution, local topography, and
flow grids based on deterministic-8 (D8) for hydrological conditioning. Streams, lakes and
rivers were then rasterized to create a source layer for surface water. Elevation above stream,
depth to water table, and topographic wetness were then also calculated. Additional inputs
included: quaternary deposits parsed into five categories (till soils, peat soils, coarse sediments,
fine sediments, rock outcroppings); open wetlands, which were used to aid in peat
delineations; and climate variables that capture runoff seasonality. Out of the four common
machine learning algorithms used (artificial neural networks, random forest, support vector
machines, and naive bayes classification) the random forest and artificial neural networks were
able to account for 84% of the wet and dry areas correctly with a relatively high Kappa
coefficient, which accounts for random chance in its measure of accuracy (0.65; Lidberg et al.,
2019). Although this method does not directly map GDEs themselves, it would identify larger
areas that can be further delineated into GDE specific regions within the boreal (i.e,, areas with
high potential to contain GDEs), and demonstrates an approach that could be effective for
supporting GDE mapping in Alberta’s boreal region.

In the higher latitude regions of Alaska, Gerlach et al,,(2022) used machine learning to locate
areas where groundwater discharged into salmon-bearing streams. This approach compiled
existing data and literature, identified well logs (>800 points), which covered 40% of the study
area, and compiled high resolution lidar (1x1 m resampled to 3x3 m) for the entire study area
(1655 km?). The authors then subset those areas where geological data existed, to determine
groundwater discharge and locations. The use of field-based observations also highlighted
that groundwater features could be identified via a combination of topographic variables
(narrow gullies, abrupt starts of deep incised stream channels along topographic contours
intervals on hill slopes). All data was processed using ESRI ArcPro. DEM-derived inputs
included: Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI), Flow-Weighted
Slope (FWS), and flow lines. The machine learning algorithm used only topographic data to
predict groundwater likelihood, using maximum entropy modeling to determine this
likelihnood. The Maxent modeling tool
(http:/biodiversityinformatics.amnh.org/open_source/maxent) was leveraged for this, and relies
on presence-only data (point, and layer form) to infer maximum likelihood by minimizing the
relative entropy between the predicted density and input points, based on the probability
densities of data inputs. Data was split into a 70/30 division with 51 locations (n=36 used as
training data, and n=15 for test data). Verification was initially done via ground-truthed points,
with the overall accuracy of the models having a high ability to predict groundwater discharge
likelihoods (AUC scores = 0.95 training data, and 0.91 test data; Gerlach et al,, 2022). The method
was able to predict the location of seeps and groundwater discharge into streams and rivers by
leveraging geological and topographic inputs. Although this study’s region has greater
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topographic relief than is found in Alberta’s boreal region, this method could be useful in
determining GDEs along flowing stream and river systems. If applied within an Alberta
context, however, the approach is likely to be limited in its usefulness, given the lower
topographic relief found in these areas.

A recent use of machine learning within the Fort McKay watershed of northeastern Alberta
illustrates the only such example within the OSR. It was a two part study conducted by
Larocque and Leblon (2022), and comprised the use of remote sensing for mapping landcover
and wetlands (some of which are GDEs), followed by water level mapping within the same
study area . The landcover mapping approach by LaRocque and Leblon (2022) targeted a study
area of approximately 5,600 km?, and leveraged three types of remote sensing data over
multiple season (spring, summer, and fall): Landsat optical (https./alovis.usgas.aov), SAR
(Copernicus Sentinel-1), and LIDAR imagery (Alberta Geospatial Centre 2009-2013). Landsat-8
imagery was used to calculate a range of 11 spectral vegetation indices (see Table 6), while
LiDAR data at 15 m resolution was used to extract a digital terrain model (DTM) as well as
additional slope (%), and slope curvature input layers. These inputs were combined in a
random forest non-parametric supervised classification, applied using R statistical software
and the Random Forest code package (Breiman, 2001, 2003). Data was split into 810 training
areas, spread over 21 classes (e.g., forest types, fen and bog types, burned areas, etc.). The
method produced an overall accuracy of 94% and a Kappa coefficient of 93.29%. The two
variables with greatest model importance based on mean accuracy were: the DTM and slope,
which, when removed, decreased classification accuracies by 93.29% and 41.86%, respectively
(LaRocqgue and Lablon, 2022).

The second phase of this work focused specifically on water level mapping using Sentinel-1
SAR data to derive high and low open water levels in mapped wetlands areas. Although this
study showed high classification accuracies with machine learning, the categorical map
output does not quantify how likely a mapped wetland system in the resulting map is a GDE.
Several of the wetland classes (e.g., types of fens) are defined within the Alberta Wetland
Classification System (AWCS) as relying on groundwater inputs; the output itself is not
specifically mapping GDEs. Nevertheless, the study does highlight the importance of
topographical variables in predicting GDEs, with the DTM and slope inputs accounting for the
highest accuracy in predictions, while spectral measures of vegetation vigor were less useful.
As the boreal is not a water-limited environment like arid or semi-arid areas, the use of
vegetation indices such as NDVI is less important, while topographical, geological and
hydrogeological inputs are more important. The high number of classes delineated in this
study also might introduce overfitting, as can happen when distinguishing a high number of
classes with machine learning algorithms. These categories also do not directly equate the
definite presence or absence of a GDE.

Of the three types of remote sensing-based GDE mapping efforts reviewed here, machine
learning is likely to be the most practical approach to mapping GDEs within the OSR. It is
capable of leveraging multiple data sources of differing data types to achieve high predictive
accuracy where data limitations exist and is scalable to large spatial areas. The integrated
hydrological modeling approach, while successful, is not a feasible approach on its own for
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larger-scale applications across the OSR. It relies on ground-based water samples that are
costly and time-consuming to collect, as well as detailed thermal imagery from airplane,
helicopter, or drone platforms, which is neither easily scalable nor easy to repeat for future
updating. While thermal imagery is acquired regularly at large scales through various
satellite-based sensors, the spatial resolution of these (e.g., 100 m for Landsat-8 or -9) is too
coarse to capture anything but the largest of GDEs. The risk mapping approach, also known as
suitability modeling, can be used for mapping of GDEs, however can have limitations with
leveraging multiple data sources, association of weighting of explanatory variables, and is
typically adapted to a presence only mapping (Malczewski, 2004). These methods are also
heavily dependent on expert opinion and can be biased (Doody et al,, 2017; Fildes et al. 2023).

Of the machine learning approaches described here, the multilayer supervised classification
approach used by the MLLMapper tool (Martinez-Santos et al., 2021) shows the most promise for
mapping GDEs within the OSR. The tool is able to incorporate a wide range of geospatial data
layers simultaneously, including a mixture of numeric and categorical variables, and could
include many of the same physical geological inputs in the OSR as those used within the
paper. It would also enable the addition of other high-resolution layers from recent Alberta
Geological Society products, which are available within the OSR and could offer improved
spatial resolution in a GDE inventory. Furthermore, the MLMapper approach implements
twenty machine learning model algorithms simultaneously and can create an ensemble
product that leverages those offering the highest accuracy (Martinez-Santos et al., 2021), to
successfully map GDEs in a multitude of environments, including the boreal. While other
platforms such as GEE, Maxent, or R statistical software are regularly used to implement
multiple machine learning algorithms, is it unknown whether any exist that provide the same
degree of ease-of-use for applying multiple machine learning algorithms for modeling the
presence/absence of a phenomenon, as well as integrating a range of input layers within one
program.

Although suitability or risk-based mapping approaches could also be implemented they were
not preferred due to their inherent limitations (demand for expert opinion, bias in assigning
weighting of variables, standardization of criterion maps, and limited computational power for
regions that do not possess data coverage), leading to stochastic mapping probabilities, and
lack the ability to leverage all available data sources (Malczewski 2004). Machine learning was
selected as the method that would allow for the maximum amount of data to be leveraged,
limiting or avoiding many of the limitations present in suitability or risk-based mapping.
Specifically, the use of multiple models to derive a binary and probability GDE map of the OSR
study area, specifically the MLLMapper platform as it can leverage up to 20 algorithms to
calculate the best fitted models (Martinez-Santos et al., 2021).
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7. Methods for GDE Mapping in the Study
Area

The MLMapper 2.0 method and tool developed and described by Martinez-Santos et al. (2021)
was used to map GDEs within the selected OSR study area (Figure 1). Updated Python code
was provided by the authors and run within a Python development environment on a local
desktop machine. The approach leverages point-source reference data in the form of known
presence and absence locations of the phenomenon of interest (i.e,, GDEs in this case),
alongside explanatory variable values associated with each of these same point sources. From
this, the tool applies up to 20 machine learning algorithms to perform supervised multilayer
pattern recognition and produce predictive models of GDE occurrence (Martinez-Santos et al.,
2021). The best performing of these, based on a user-defined threshold, are then combined to
produce an ensemble model output map of relative GDE likelihood. Ensembles or averaged
models have been shown to typically perform better than single method approaches
(Dormann et al, 2018). The overall workflow of the MLLMapper tool and the steps that were
followed here for mapping GDEs in the study area, are outlined in the diagram given in Figure
2. The machine learning modeling approaches tested in our study area included the following
15 methods: linear support vector machines (LSVM), logistic regression (LRG), a decision tree
classifier (CRT), a random forest classifier (RFC), linear discriminant analysis (LDA), a K-nearest
neighbor classifier (KNN), a gradient boosting classifier (GBC), an Ada-boost classifier (ABC), an
extra-trees classifier (EXT), a passive aggressive classifier (PAC), quadratic discriminant analysis
(QDA), multilayer perception neural networks (MLP), a ridge classifier (RID), a stochastic
gradient descent linear classifier (SGD), and perceptron (PRC). Analyses and output map
products were both produced using a 50 m pixel resolution. This provided an effective scale
that balanced the desire for detailed mapping and the resolutions of the various input
datasets (see the following sections for more detail on these).
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Figure 2. Flowchart showing the main components of the workflow used to map GDEs across
the study area, leveraging the MLMapper 2.0 tool from Martinez-Santos et al. (2021).

The 13 explanatory input variables used in this preliminary GDE mapping work each fall into
one of three categories: topographic, hydrogeological, and wetland. Data were reprojected to a
common coordinate reference system (i.e,, NAD 1983 CSRS UTM Zone 12N (EPSGC 2956)), so as
to ensure geolocational alignment. Martinez-Santos et al. (2021) reclassified their input variable
datasets into integer category values before using them in the MLMapper tool. The use of
reclassified inputs versus original, scaled inputs was tested here. For some model runs, variable
values were binned into one of several output categories and assigned a relative integer value
(see TablesTOPO VAR CLASSES, HYDROGEOL VAR CLASSES, and WETLAND VAR CLASSES).
Reclassification was based on subject matter expertise and knowledge (e.g., John Gibson,
personal communication). For other model runs wherein inputs were not reclassified, the
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values were simply scaled before being used in the MLMapper tool, so as to remove negative
and decimal values (TablesTOPO VAR CLASSES, HYDROGEOL VAR CLASSES, and 8).

7.2]1 Topographic

Information on the regional and local terrain is key to identifying likely locations for GDEs since
terrain is a strong influencer of water movement and depth to groundwater, which is a critical
component of groundwater presence near, or expression at, the surface. Five topographic
input variables were used in this work: elevation, flow accumulation, slope, terrain ruggedness
index (TRI), and the SACA wetness index (SWI), which is comparable to a more generic
topographic wetness index but specific to the SAGA software. Maps of these inputs are
provided in Figure 3. A satellite-based digital surface/elevation model from the Japan
Aerospace Exploration Agency's Advanced Land Observing Satellite (ALOS) (Tadono et al,, 2014)
provided the source for elevation, slope, TRI, and SWI inputs. These data are publicly available
in a 30 m resolution for the globe, and were accessed using Google'’s Earth Engine platform
(Gorelick et al,, 2017). SWI and TRI datasets derived from ALOS already existed for the study area
within the ABMI's geospatial data archive, and were used here, while slope was derived for this
project from the same source. Flow accumulation data were compiled from a separate source,
however, and originated from the MERIT Hydro global hydrography datasets
(https:/hydro.is.u-tokyo.ac jp/~vamadai/MERIT_Hydro/). Table 7 describes how these
topographic inputs were classified and scaled for inclusion in the MLMapper tool.
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Figure 3. Maps of the five topographic explanatory input variables used in mapping GDEs
over the study area.



Table 7. Table describing the scaling and reclassification of topographic input explanatory
variable values into integer classes, for inclusion in the MLMapper tool.

units)

4.100,000-125,000

5.125,000-150,000

Input Variable Integer Reclassification Sfpetiel . Data Source
Resolution
1.222 -350 m
. 2:350-450m Satellite-based ALOS DEM
Elevation )
3 450 - 550 m (https://developers.google.
Sealing: rounded to 30m com/earth-engine/datasets
9 4:550 - 650 m Jcatalog/IAXA_ALOS_AW3
nearest integer D20 /3 2
5:650 - 750 m V3.2)
6:750 - 860 m
1.1-5 Calculated from ALOS
SAGA Wetness Index DEM
. 2.5-7 .
(unitless) (https://developers.google.
10m .
3:7-9 com/earth-engine/datasets
Scaling: multiplied by 100 Jcatalog/IAXA_ALOS_AW3
4:9-12 D30_V3_2)
1.0
Terrain Ruggedness Index [2:>0-05 Calculated from ALOS
(unitless) DEM
3:05-1 (https://developers.google.
10m
Scaling: multiplied by 10 41-2 com/earth-engine/datasets
Jcatalog/IAXA_ALOS_AW3
5:2-5 D30_V3_2)
6:5-18
1: 0 - 5degrees
9 Calculated from ALOS
2:5-10 degrees DEM
Slope (degrees) (https://developers.google
310 - 15 degrees 30m ‘ T i
Scaling: multiplied by 100 com/earth-engine/datasets
' 4:15 - 20 degrees Jcatalog/IJAXA_ALOS_AW3
D30_V3_2)
5:20-90 degrees
1. 0-5000
2.5000-15000 MERIT Hydro
Flow accumulation (cell 3.15,000-10.0000 Om (https:/hydro.iis.u-tokyo.ac.

jp/~yamadai/MERIT_Hydro/
)
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7.2.2 Hydrogeologic

Explanatory variables under a hydrogeological focus included: permeability derived from
surficial geology, soil drainage, aquifer hosting sediment, depth to water, and bedrock. Surficial
geology plays a crucial role in the movement of groundwater, where highly permeable
geological features are likely to have an increased probability of groundwater upwelling and
are thus more likely to coincide with the presence of GDEs. A surficial geology dataset from the
Alberta Geological Survey (AGS) maps 601, 618-621 was converted into a permeability scale
through classification into five permeability classes, based on expert opinion from AGS. In
these classes a O (zero) signified low permeability, while five was considered to represent high
permeability (Figure 4; Table 8).

Soil drainage influences the hydrological recharge of GDEs and the likelihood that an area is
prone to water table fluctuations. These data were obtained from Soil Landscapes of Canada
V3.2 which includes a max depth of 1-2 m below the surface. Soil types were classified into five
categories normalized along a range from 1= well drained to 5 = very poorly drained (Figure 4;
Table 8).

Aquifer hosting sediment indicates regions that are likely to have large aquifer systems and
thereby be more permeable, and more likely to contain GDEs. These data were obtained from
AGCS map 632 and classified into 4 categories, wherein: O = no values, 1 = known plains upland, 2
= potential plains upland, 3 = inferred buried valley, and 4 = known buried valleys (Figure 4;
Table 8).

Depth to water was derived from the Aquanty HGS model of the Athabasca River Basin at a
500 m resolution. Areas closer to high water tables are more likely to be GDEs as there is both
a greater potential for a groundwater seep or spring to occur, and for the water table to be in
closer proximity to the rooting zone of local vegetation. The data were scaled by 100 and then
normalized along a 1-5 scale with a range of 1 indicating near surface (e.g., 0to 01 m),and 5
indicating greater depths (e.g., 2 to 5 m) to groundwater (Figure 4; Table 8).

Bedrock formation data was pulled from the AGS 600 map and categorized into 12 unique
classes. Bedrock formations influence regional groundwater flow and have potential to infer
channeling of deep basin groundwater based on the unique hydrogeochemical and
hydrogeological features of each formation. These were therefore included to assess to what
extent GDEs presence is derived from bedrock formation (Figure 4; Table 8).
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Figure 4. Maps of the five hydrogeologic explanatory input variables used in mapping GDEs
over the study area.
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Table 8. Table describing the scaling and reclassification of hydrogeological input explanatory

variable values into integer classes, for inclusion in the MLMapper tool.

Input
Variable

Integer Reclassification

Spatial
Resolution

Data Source

Surficial
Geology

O: Anthropogenically excavated materials,
infilled or made materials

1: Bedrock (general or thin/absent),
Organic deposits (general or peat)

2: Fluted moraine (general or clayey-silt
diamicton),

Glaciolacustrine deposits (general or
silt-clay),

Lacustrine deposits (general, or sand, silt,
and clay, minor deposits),

Littoral and nearshore sediments,
Moraine (clayey-silt diamicton or silty-sand
diamicton),

Stagnant ice moraine (general, clayey-silt
diamicton, or silty-sand diamicton)

3: Colluvial deposits (general or diamicton),
Fluted moraine (pebbly diamicton, or
silty-sand diamicton),

lce-contact sediments (stratified sand and
silt),

Ice-thrust moraine (general, stratified sand
and silt, or syngenetic diamict and displaced
sediment and/or bedrock),

Moraine (general, pebbly diamicton,
sandy-silt diamicton, or massive to stratified
silty sand, pebbly sand and minor gravel)

4: Fluted moraine (predominantly sand)
Fluvial deposits (general, or stratified sand,
gravel silt, clay and organic sediments)
GClaciofluvial deposits (general, or sand with
minor gravel)

lce-contact sediments (sand)

Moraine (predominantly sand, or sand and
gravel)

5: Eolian deposits (general, or sand)

1100,000 to
11,000,000

Alberta Geological
Survey, Maps
618-621, and 601

Soil
Drainage

1: Very poorly drained

2: Poorly drained

3. Moderately well drained

4. Well drained

5: Rapidly drained

11,000,000

Soil Landscapes of
Canada v3.2,
Agriculture and
Agri-Food Canada
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Aquifer
Hosting
Sediment

O: no value

1: Known plains upland

2: Potential plains upland

3. Inferred buried valley

4: Known buried valley

1:3,000,000

AER/AGS Map 632,
Alberta Geological
Survey

Depth to
Water

Scaling:
multiplied
by 100

1.0-01m

2:01-05m

3:05-10m

4:1-2m

52-5m

500 m

Aguanty

Bedrock

1: Pelican Formation

2: Joli Fou Formation

3. Grand Rapids Formation

4: Clearwater Formation

5: Wabiskaw Member

6: McMurray Formation

7: Waterways Formation

8: Westgate Formation

9: Lea Park Formation

10: Fish Scales and Belle Fourche Formations

11: Second White Specks, Carlile, and
Niobrara Formations

12: Keg River Formation

11,000,000

Alberta Geological
Survey, Map 600

7.2.3 Wetlands

Two wetland inventories covering the study area and developed for the OSM program (Alberta
Biodiversity Monitoring Institute & Ducks Unlimited Canada, 2023), were used here to map

GDEs. The first is a map of wetland classes according to the AWCS, while the second is more
detailed and maps the area down to AWCS wetland form (Figure 5). These represent the most
recent wetland mapping efforts in our study area (e.g., reflecting 2020-2022 conditions), and

possess a 10 m resolution with a 0.04 ha minimum mapping unit. Other wetland inventories

available for the study area, such as the Alberta Merged Wetland Inventory (Alberta
Environment and Parks, Government of Alberta, 2022), are either quite dated (e.g., 1999-2009),
less thematically detailed (i.e., not to the form level), and/or provided at a coarser resolution
(e.g., 30 m). As the wetland class and form inputs were already provided as integer rasters,
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wherein each integer value represents a class or form, no scaling or further reclassification was
needed for input into the MLMapper tool.

In addition to wetland, the last explanatory input variable comprised a 2023 growing season
NDVI composite covering the study area (Figure 5). This was derived from Sentinel-2 optical
imagery acquired during May through September of 2019 to 2023 that was cloud-masked and
composited using a per-pixel median statistical filter to produce a “best available pixel” type
NDVI image of the 2019 to 2023 growing season greenness. Processing was done using the

Google Earth Engine platform. Table 9 describes how the NDVI input raster was scaled and
classified for use in the MLMapper tool.
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Figure 5. Maps of the two wetland inventory and one NDV/| explanatory input variable used in

mapping GDEs over the study area.
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Table 9. Table describing the scaling and reclassification of NDVI input explanatory variable
values into integer classes, for inclusion in the MLMapper tool.

Integer Spatial

o . . Data Source
Reclassification |Resolution

Input Variable

Normalized
Difference Vegetation |1:-1.0- 0.0
Index (unitless)

Calculated from 2023 ESA Sentinel-2
summertime imagery

10m (https://developers.google.com/earth-
2:00-05 engine/datasets/catalog/COPERNICU
S_S2_SR_HARMONIZED)

Scaling: added 1, then
multiplied by 1000 305-10

The data used for model training and cross-validation comprised 227 known GDE presence
locations, and 227 known absence locations. These data were compiled from a combination of
ABMI open water wetland water isotope analysis samples from the collaborative isoABMI
project with InnoTech Alberta, Alberta Geological Survey spring and fen locations, McKay River
differential gauging locations (Bickerton et al,, 2018), local high-elevation points, and a recent
AWCS wetland class and form inventory(Alberta Biodiversity Monitoring Institute & Ducks
Unlimited Canada, 2023). The ABMI open water wetlands are confidential site locations and not
provided in the corresponding data files. The wetlands were categorized using isotope mass
balance approaches relative to their groundwater input where thresholds/categories for GDE
presence and absence were the isotopic ratio of groundwater > surface water, and
groundwater < surface water, respectively based on water yield and run off calculations. Greg
Bickerton (ECCC) provided the locations of differential gauging measurements along the
McKay River and indicated that the reach between stations 2-4 had no evidence of significant
groundwater discharge (i.e, surface water inputs can explain the gain in flow, whereas the
reach between stations 5-9 had significant groundwater input). Points categorized as GDE
absence locations were randomly placed between stations 2-4, and GDE presence locations
were randomly placed between stations 5-9. The Alberta Biodiversity Monitoring Institute and
Ducks Unlimited Canada (2023 OSM wetland inventory considered fen locations as GDE
presence, and bog and upland locations as GDE absence points. Figure 6 shows the locations
of training point data, while the numbers of samples extracted for use from these various
sources are provided in Table 10.
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Figure 6. Figure showing the distribution of GDE presence (blue, “yes”) and absence (grey,
“no”) training and test points across the study area and greater area of analysis.

Table 10. Table listing the sources of GDE presence and absence training and test data used

to model GDEs in the study area.

Reference Data Source

GDE Presence Points

GCDE Absence Points

Shallow Open Water Wetlands (iscABMI)

17

21

OSM Wetland Inventory (ABMI & DUC 2023)

Fens - 98

Bogs - 130

Uplands - 41

Alberta Geological Survey Springs & Fens

Springs & Fens - 62

MacKay River differential gauging (ECCQC)

Drive stations - 50

Between drive
stations - 30

ALOS DEM

Elevation > 700 m -5

Total

227

227
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Reclassified data from the 13 explanatory variable input layers was extracted for each of the 454
GDE presence/absence training locations, and placed into a comma-delimited text file, for
input into the MLMapper tool. The tool was run with 100 iterations, and varying combinations
of input variables were tested on the basis of variable importance and correlation metrics
output by the tool after each model run. Model runs also included the use of reclassified input
variables or scaled, original input variables, as well. Model performance metrics were used to
select the number of iterations and which explanatory input variables to include for the final
model run. After optimization, fine-tuning, and iteration and input variable selection were
complete, a final model run was performed and the resulting outputs from the
top-performing machine learning models were selected using several common model
performance metrics, most notably the area under the curve of the receiver operating
characteristic (AUC), which balances model sensitivity and specificity, as well as optimized test
scores.

Once selected, each of the top models was then mapped over the study area using a
systematic grid of points placed 50 m apart to produce a binary map of GDE predicted
presence and absence, which was then converted into a 50-m resolution raster map product.
These binary outputs (the 1s and Os, reflecting presence and absence, respectively) from the
top-performing models were then averaged to produce a final ensemble map of predicted
relative GDE likelihood or probability across the study area.

As a final step, the final binary and ensemble GDE map outputs were overlaid with information
on known, non-vegetated human footprint features so as to identify where likely GDEs overlap
with these types of disturbances. These features were extracted from the ABMI's Human
Footprint Inventory 2021 (Alberta Biodiversity Monitoring Institute & Alberta Human Footprint
Monitoring Program, 2023), and included features from the following sublayers: reservoirs;
borrow pits, sumps, dugouts, and lagoons; roads; railways; canals; mines; and, industrial
features.

8. Results and Discussion

The results of the pairwise correlation analysis performed on all 13 of the potential explanatory
input variables is found in Figure 6. The results of the matrix are displayed using two color
schemes along a normalized scale with green (R = 1) showing strong positive correlation and
purple (R = -1) showing strong negative correlation. The discrimination thresholds used for
removing correlated variables were adopted from Martinez-Santos et al. (2021), which are
commonly accepted at a range between 0.7 to -0.7, although results as high as 0.84 have been
known to be acceptable (Dormann et al, 2013). Initial results showed that wetland class and
wetland form had a positive correlation higher than 0.75, while TRl and SWI showed a strong
negative correlation (< -0.75; Figure 6). Outputs from the initial model run were used to assess
which variables had higher importance to the models overall, and subsequently remove one in
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each pair of highly correlated variables. Both wetland form and TRI were removed from the
model as they contributed less to all models when compared to wetland class and surface
wetness index, and were highly correlated with them, respectively (Appendix E; R1E). Once
these two had been removed, subsequent model runs showed the input variable correlations
remained between 0.7 to -0.7 for all pairwise comparisons (Figure 6).

Wetland Class 1

Soil Drainage 1

Slope { -0.
SAGA Wetness Indexq -0. Pearson's R
1.0
Permeability 7 - .
0.5
NDVI 4
0.0

Flow Accumulationq - I 05
Elevation 1 -1.0

Depth to Water 1
Bedrock 1

Aquifer Hosting Sediment -o.

Figure 6: Results of pairwise correlation analysis of the final selection of 11 explanatory
variables used in mapping GDEs in the study area. Numbers in the plot show the Pearson
correlation coefficient. These included: aquifer hosting sediment, bedrock, depth to water,
elevation, flow accumulation, normalized difference vegetation index (NDVI), permeability,
SACA wetness index, slope, soil drainage, and wetland class.

Table 1 lists the tuning parameters used for each of the separate machine learning algorithms
applied to the GDE dataset, as well as the optimum number of input variables found to
produce the best results during cross-validation.
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Table 11. MLMapper algorithm tuning parameters and optimum number of input variables
based on outputs from cross-validation.

Optimum Number of

Algorithm Optimized Parameter Values Y

max_depth = 4

max_features = 0.6
Random forest classifier min_samples_leaf =5 9
Nn_estimators = 141
random_state = O

max_depth =9

max_features = 0.3
Cradient boosting classifier min_samples_leaf = 29 M
n_estimators = 70
random_state = O

algorithm = ‘SAMME’
learning_rate = 0.232065
n_estimators = 250
randomt_state = O

Ada-boost classifier

max_depth =6
max_features = 0.8
Decision tree classifier min_samples_leaf =18 7
min_samples_split = 0.2
randome_state = O

max_depth =6
max_features = log2
Extra-trees classifier min_samples_leaf = 2 3
n_estimators = 590
random_state = O

Ranked feature importance from the top five algorithms indicated that wetland classification,
followed by the digital elevation model (DEM) were the most important features. There is a
steep drop off in importance to the third variable which was surface wetness index, and then a
gradual decline in importance with regards to permeability and NDVI. Depth to water table,
bedrock and soil drainage were among the lowest ranked explanatory variables. Both aquifer
and flow scored the lowest rank among the 11 explanatory variables (Figure 7). Individually each
algorithm ranked the explanatory variables slightly differently, however both wetland class and
DEM remained in the top positions across all five consistently (Figures E1, E2 E3 E4 and ES
in Appendix E).
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Figure 7. Normalized explanatory feature importance based on rank from the top five
algorithms.

The model tuning and correlations show that some remote sensing products are correlated
(Wetland Form and Wetland Class; SACA wetness Index and Terrain roughness index) and
highlight that some explanatory variable can have higher contributions to the model and that
there should be moderation between input variables to balance tuning (Fildes et al., 2023).
Consideration of derivative variables (e.g., Normalized Difference Coefficients of Variation Index
NDCVlypv from NDVI) may identify additional products which prove more sensitive for
detection of GDES within the boreal (Fildes et al., 2023). Access to high resolution thermal
imagery could improve detection of GDEs within aquatic and terrestrial systems (Birks et al.,
2012; Ala-aho et al,, 2015; Autio et al., 2023; Watts et al,, 2023). Although each model had a
unique feature reduction, the limitation for all models improved predictions capability, and
while some models were able to perform well on test scores (0.92 to 0.89) each had unique
strengths in their ability to predict aquatic and terrestrial systems.

The standardized performance metrics output by MLMapper showed a group of five5
algorithms with that yielded test score results greater than 0.89 which included: random forest
classifier (RFC), gradient boosting classification (GBC), AdaBoost classifier (ABC), decision tree
classifier (CRT), extra-trees classifier (EXT). There is a steep drop off from below test scores of
0.89, with the remaining models only able to predict from 0.76 to 0.55. The remaining models
were logistic regression (LRG), linear discriminant analysis (LDA), ridge classifier (RID),
K-neighbor classification (KNN), stochastic gradient descent linear classifier (SCGD), perceptron
(PRC), multilayer perceptron neural network (MLP), quadratic discriminant analysis (QDA),
Passive Aggressive Classifier (PAC), and Linear Support Vector Classifier (LSVC) which struggled
to predict GDEs with a test score of only 0.55. The discrimination threshold was therefore set at
0.89 with algorithms scoring below being discarded from the ensemble map (Table 12).
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Table 12. Performance metrics of supervised algorithms (Train = optimized training score, Test = optimized test score, Prec. F =

precision false; Prec. T = precision true; Rec. F = recall false; Rec. T = recall true; F1. Sc. F = f-1score false; F1. Sc. T = -1 score true; AUC =

area under curve, TN = true negatives; TP = true positives; FP = false positives, FN = false negatives).

Algorithm Train Test Prec.F |Prec.T |Rec.F |Rec. T |F1.Sc. F|Fl.Sc.T|AUC TN TP FP Fn
RFC 0.91 0.92 092 092 0.90 0.93 0.91 093 0.97 57 69 6 5
GBC 0.95 0.92 0.91 0.93 092 0.92 0.91 0.93 0.95 58 68 5 6
ABC 0.89 0.91 0.89 0.93 092 0.91 0.91 0.92 0.94 58 67 5 7
CRT 0.90 0.91 0.89 0.92 0.90 0.91 0.90 0.91 092 57 67 6 7
EXT 0.91 0.89 0.86 0.92 0.90 0.88 0.88 0.90 0.94 57 65 6 9
LRG 0.69 0.76 0.70 0.83 0.83 0.70 0.76 0.76 0.80 52 52 N 22
LDA 0.66 0.74 0.68 0.80 0.79 0.69 0.74 0.74 0.82 50 51 13 23
RID 0.68 0.72 0.67 0.78 0.78 0.68 0.72 0.72 - 49 50 14 24
KNN 1.00 0.69 0.63 0.80 0.83 0.58 0.71 0.67 0.77 52 43 N 31
SGD 0.63 0.68 0.66 0.70 0.63 0.72 0.65 0.7 - 40 53 23 21
PRC 0.63 0.64 0.59 0.73 0.76 0.54 0.66 0.62 - 48 40 15 34
MLP 0.54 0.61 0.58 0.64 0.57 0.65 0.58 0.64 0.64 36 48 27 26
QDA 0.68 0.61 0.54 0.88 0.95 0.31 0.69 0.46 0.81 60 23 3 51
PAC 0.62 0.57 0.52 0.94 0.98 0.22 0.68 0.35 - 62 16 1 58
LSVC 0.50 0.55 0.67 0.55 0.06 0.97 0.12 0.70 - 4 72 59 2
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The test scores of the best-performing models were all within 0.92 to 0.89, with the top
algorithms (random forest and gradient boosting classifiers) scoring 0.92. The next highest was
Ada boost and Decision tree classifiers at 0.91, and lastly Extra trees classifier scoring 0.89 on
test data (Table 12). The recursive feature elimination outputs for the top five algorithms
indicated that random forest was able to optimize test results using only 9 of the variables
(Figure E.2A in Appendix E), while gradient boosting leveraged all 11 to achieve the same result
of 0.92 (Figure E2B in Appendix E), Ada-boost was able to predict an accuracy of 0.91 using
only 4 variable (Figure E.2C in Appendix E), while decision tree needed to leverage 7 to obtain
the same result (Figure E.2D in Appendix E). The Extra-Trees classifier was optimized at 3
variables but achieved the lowest accuracy at 0.89 compared to the other top five (Table 12;
Figure E.2E in Appendix E).

Random forest (RFC) was able to predict aquatic flowing systems and identified the McKay
River as a GDE location for approximately 22 km upstream from the mouth of the Athabasca
River. It was similarly able to identify GDE presence in the High Hill River at the confluence of
the Clearwater River mouth approximately 10 kms into the headwaters. When assessing lake
features, RFC labeled the centre of some lakes (e.g., two small unnamed lakes east of Fort
McMurray (56.769341, -110.908782; 56.896575, -110.896889) as Non-GDE, while the perimeter of
these same lakes is labeled as GDE (Figure 8: RFC). The gradient boosting classifier (GBC) was
able to predict similar outputs to those seen in random forest (RFC) with a slightly wider buffer
for confirmed GDEs along flowing systems, and slight differences in classifications of terrestrial
GDEs (Figure 8: GBC). However, the AdaBoosting classifier (ABC), struggled to pick up flowing
systems and underpredicted the McKay River (approximately 10 km from the confluence of the
Athabasca River), and High Hill River (approximately 2 km from confluence with the Clearwater
River). Nevertheless, it seemed to be able to predict both terrestrial and lake features similar to
the random forest and gradient boosting classifiers (Figure 8: ABC).

The Decision Tree classifier (CRT) was similar to AdaBoosting classifier (ABC) in its abilities to
identify GDEs in flowing systems, and terrestrial and lakes delineations. The greatest noticeable
difference is that it predicted GDE locations slightly larger and predicted somewhat more
terrestrial GDEs (Figure 8). In contrast, The Extra Tree classifier (ETC) was able to predict GDEs
in flowing systems with the highest accuracy and captured approximately 38 km of the McKay
River and performed similarly in capturing GDEs along the High Hill River from the confluence
of the Athabasca and Clearwater Rivers respectively. It delineated both terrestrial and lake
feature GDEs similar to all preceding models (Figure 8).
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Figure 8. Binary predictive GDE outputs maps from the five best algorithms: random forest
classifier (RFC), gradient boosting classification (GBC), AdaBoost classifier (ABC), decision tree
classifier (CRT), extra-trees classifier (EXT). The ensemble map (ENS) averages all five
algorithms into a predictive GDE occurrence (Very Low to Very High) probability.
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The results from the models indicate a bias in training data. Model performance in delineating
aqguatic flowing systems and terrestrial (open water wetlands) GDEs varied considerably, but all
binary models tended to label the centre of the lake as non-GDEs while labeling the shorelines
as GDEs. This is likely a result of the training sets including only wetland and river features (i.e.,
no lake training data), and highlights the need to include datasets from boreal lakes into the
training model, such as the Regional Aquatic Monitoring Program (RAMP) lakes datasets, to
improve GDE delineation in non-flowing systems(Gibson et al., 2019).

The ensemble map (ENS) averages the outputs of all five binary models and is then able to
produce a predictive map of GDE the likelihood of a GDE based on five classes (very low to very
high), broken down into probability steps of 20% (e.g., 1- 20% = very low; 80% - 100% = very
high). The ENS map highlights flowing systems well and shows lower GDE probability with
both distance from the river and while moving into the headwaters (Figure 8). The ENS map
also highlights small regions of terrestrial GDEs that are not consistent between all models by
showing lower GDE probabilities in these areas (e.g., regions west of McKay River headwaters
are identified as high GDE probability, while along the Steepbank River area some sections
show lower GDE probability). Edge effects are seen at the two small unnamed lakes east of
Fort McMurray, where the interior of the lake showed a lower GDE probability and the
shoreline showed a higher GDE probability (Figure 8).

In terms of human footprint, the top 5 models all predict several of the mining areas as being
GDEs, resulting in their having a high probability of being GDEs in the resulting ensemble map
(Figure 9). This is most likely a result of the input DEM data, which captures the lower
elevations in features such as mining pits and tailings ponds and thus suggests to the models
higher GDE likelihood. This highlights the strong role the DEM input layer plays in predicting
GDE location and occurrence.
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Figure 9. Binary predictive GDE outputs maps from the five best algorithms: random forest
classifier (RFC), gradient boosting classification (GBC), AdaBoost classifier (ABC), decision tree
classifier (CRT), extra-trees classifier (EXT). The ensemble map (ENS) averages all five
algorithms into a predictive GDE occurrence (Very Low to Very High) probability. Both human
footprint (mining areas, purple) and previous fire records (1999-2020; orange) overlay the area
of analysis.
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Overlaying fire data onto the final map seems to show that many of the previously burned
areas are predicted to be non-GDEs or sparsely populated GDE systems on the ENS map
(Figures 9 and 10). This could be further explored. Thompson et al,, (2019) noted that peatlands

can have a fragmenting effect during wet years, protecting the landscape from fires, with the
inverse being true during times of drought.

Probability of GDE High —
B Very Low I Very High 0 10 20 o
Low
Medium

Figure 9. Map of GDE probability across the study area (white line) and area of analysis (full
extent) produced by the ENS model.
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Figure 10. Map of GDE probability across the study area (white line) and area of analysis (full
extent) produced by the ENS model. Both human footprint (mining areas, purple) and
previous fire records (1999-2020; orange) overlay the area of analysis.

Figures 11 and 12 show the ENS map over a portion of the study area at a more detailed scale,
with or without human footprint and fire features, respectively. These close-ups focus on the
McKay River, where a buffer area around the river can be more clearly seen, and the channel of
the river showing high GDE probability. This probability decreases with distance from the
channel, although there are sections where shift is very less gradual and very sudden. In the
downstream reaches of the McKay River, the width of the high probability GDE areas
undulates slightly in certain regions, however overall they appear to be slightly widening
(Figure 11). Fire and human footprint do not seem to play a role in GDE predicted likelihood,
but rather, reflect regions where fewer GDEs are present (Figure 12).
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Figure 11. A focused look at the Fort McKay River within the study region, based on the
ensemble of the top five mapping algorithms.
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Figure 12. A focused look at the Fort McKay River within the study region, with both human
footprint (purple) and previous fires 1999-2020 (orange), based on the ensemble of the top five
mapping algorithms.

8.4.1 Alternative Modeling Approaches

While ensemble models generally score higher in validation assessments (Dormann 2018), this
gain in overall model fit must be considered against potential drawbacks of model averaging
in general. Averaging outputs of multiple models has the effect of converging different values
in individual models that may be more or less accurate for certain locations, classes, etc. So,
whereas the ensemble model is generally more accurate, individual models may be more
accurate for certain applications. To assess these specific applications requires a more
comprehensive and data intensive validation process that could form part of the modeling
work going forward. Further, to get at more accurate models for specific classes or region,
instead of averaging all model outputs together into a single ensemble, separate modeling
efforts could be undertaken for specific environmental features, habitats, or environments (e.g.,
separate modeling efforts for riverine vs. wetland vs. upland environments), then combined.
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While this could result in more accurate models, it also compounds the effort and
computational intensity of the modeling process and generally requires larger datasets,
specific to each modeling effort, which could be a major barrier to this approach within this
project.

8.4.2 Model Generalization and Validation

Models built for this project were trained and tested only within our relatively small study area,
so their capacity for generalization to other regions (i.e, predictions in new spatial locations)
throughout the OSR has not been rigorously tested. All model projections beyond the training
data locations assume consistency in how explanatory variables (i.e., our 11 predictors) relate to
response variables (i.e. existence of GDEs or not) between the model training and validation
locations—an assumption known as stationarity. In reality, environments seldom behave in this
way and stationarity is not maintained over larger areas, so using locally trained models to
project to larger areas or to locations farther away in space should be done with extreme
caution and should always, if possible, be validated with independent data from the projection
area. There are alternative statistical cross-validation approaches that can produce better
accuracy estimates for model projection to new areas, and these could be explored in the
future if additional data are not available to test model projections to new areas.

In addition to testing model capacity for projection, enhanced model validations could be
implemented to provide more specific accuracy statistics. For example, GDE predictions could
be validated against mapped wetland classes to provide a more comprehensive
understanding of where (i.e,, for which wetland classes) the model was performing better or
worse. Such validations would help inforrn modeling next steps (including the potential
composite modeling approach described above) by identifying the strengths and weaknesses
of the individual models. Such a validation could also provide ecological understanding by
comparing which predictor variables are more important in the best model for certain wetland
classes (or other mapped features). Again, such validations would require adequate data
resources and additional validation data could be required for underrepresented classes in the
existing model training data.

This first GDE project phase focused exclusively on the boreal region, with the study area
entirely with the Athabasca OSR. Because water resources tend to be readily available for
plants in this region, productivity tends to be relatively consistent across the area. For this
reason, NDVI is a less powerful indicator of plant stress (i.e., discriminator of wetland vs. upland
habitats) than it would be in, for example, more arid environments where gradients of
productivity are more closely tied to water availability. For this reason, in arid environments,
phreatophytes (species able to access deep water resources) would be stronger indicators of
GDEs than they are in the boreal where the local source of their water is more uncertain. An
additional confounder of leveraging NDVI data in the boreal is the natural fire regime, which
can complicate the interpretation and modeling integration of NDVI values if not paired with
knowledge of recent burns or regenerating stand ages.
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8.4.3 Other Data & Knowledge

There are additional data not immediately available for this first modeling effort that could
improve model accuracies (overall or in specific environments) and potentially increase model
generalizability or transferability. These could include other data such as:

e Higher resolution depth to water, which could improve both aquatic and terrestrial
GCDE detection;

e | ake datasets (i.e, RAMP lakes) to train the model to better predict lake features;

e High resolution thermal imagery, which would better capture groundwater inputs of
aguatic reaches such as lakes, rivers, and open water wetlands;

e Fulllidar coverage of the OSR (in progress via ABMI), which supports the development
of very high resolution bare earth model DEMs capable of detecting smaller GDEs;

e Updated wetland inventories for the OSR, created using high-resolution lidar; and

e Additional consideration of burned and human footprint areas and any confounding
effects they may have on outcomes.

Finally, local Indigenous commmunities have developed deep knowledge of their traditional
lands, including the location and importance of many GDEs (e.g., mineral licks used by local
mammal populations). Integrating western science approaches with other ways of knowing,
including Indigenous Knowledge, would strengthen this work. Further, there are valuable data
being collected via Indigenous Community Based Monitoring programs within the OSR (e.g.,
isotopes, water geochemistry) that could be applicable to mapping GDEs. Opportunities for
collaboration between western science approaches and Indigenous communities are likely to
result in beneficial understanding for both local communities and the Oil Sands Monitoring
program.

9. Conclusions and Recommendations

We developed the first aquatic GDE map (Figure 9) for a study area in the OSR to fulfill a key
knowledge gap in the OSM program related to identifying the locations of GDEs. This work
supports long-term planning for groundwater monitoring and could be used to assist in
identifying where baseline, change and effects-based monitoring could be considered for GDE
receptors. This milestone marks the successful completion of Year 1 of a multi-year project with
the long-term objective of mapping GDEs across the OSR. While the focus of Year 1 was on
mapping aquatic GDEs, future years aim to focus on developing methods for mapping other
GDE categories (e.g., terrestrial, subterranean) and scaling-up the application of these
approaches across the larger OSR.

All three phases of work were completed: 1) developing an approach for mapping GDEs, 2)
evaluating data availability, and 3) preliminary mapping of one GDE category in a pilot study
area. The first phase, developing the approach, involved defining the categories of GDEs in
Alberta’s boreal (aquatic, terrestrial, subterranean), conducting a modest literature review of
both groundwater and biological indicators (with a focus on aquatic GDEs), and reviewing and
selecting geospatial approaches for mapping GDEs with careful attention to methods that
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may be suitable in boreal environments (because much more work has been done in arid
regions globally). The literature review for biological indicators of aquatic GDEs was
underscored by the consistent messaging, across approaches, locations, and taxa that our
collective understanding of GDEs is lacking due to limited research and the often cryptic
nature of these ecosystems. Suitable bioclogical indicators for the specific identification and
mapping of GDEs in boreal Alberta cannot be firmly backed by empirical evidence at this time,
nor are the potential relationships between stressors, pathways, and ecological endpoint
responses clear. The use of wetland types, e.g., bogs and various fen types, in mapping GDEs is
supported by our understanding of the dependence of these wetlands on groundwater
(AESRD, 2015). Considering macroinvertebrate, microbial, and stygofauna indicators, the
paucity of information from Canada presents a limitation. That GDEs house unique
assemblages of these taxa is clear from the literature, however defining the components and
distribution of assemblages in boreal Alberta would require further work.

We selected a machine-learning based geospatial approach for mapping aquatic GDEs using
MLMapper developed by Martinez-Santos (2019) because remote sensing-based GDE
mapping approaches are the most cost effective and accessible for large-scale application,
machine learning approaches allow the leveraging of multiple data sources with different data
types to support higher predictive accuracy even where data may be limited and they avoid
challenges of bias associated with dependency on expert opinion. The specific machine
learning approach chosen offers the ability to incorporate a wide range of geospatial data
layers, applies a broad set of machine learning model algorithms simultaneously, and offers
the advantage of an ensemble product that combines the highest accuracy individual models.
Finally, the flexibility of this approach means that additional datasets can easily be
incorporated into future applications, to test opportunities to improve model accuracy.

The second phase, evaluating data availability, included identifying and collating available data
for mapping GDEs, selecting appropriate data to serve as training & validation data and
explanatory variables in MLMapper model, and identifying data gaps. Over 50 datasets were
identified, with over 40 datasets compiled. The key data gaps are access to the McKay River
Integrated Surface Water-Groundwater Model, hydraulic head data, and higher resolution
thermal data. Recommended next steps to filling these data gaps include ongoing
communication with the producers of the McKay River Model, working with AGS to access
updated hydraulic head data in 2024/25, and evaluating additional options for higher
resolution thermal data from satellite or aerial collection. In addition, we will continue to work
with the Fort McKay Métis Nation to enable considerate access to their data to increase
validation datasets and consider the use of the RAMP lake datasets to improve prediction for
boreal lakes.

The third phase was completed by mapping aquatic GDEs in the McKay and Steepbank River
watersheds using the methods identified in phase 1and the data collated in phase 2. The
MLMapper model was trained and tested with binary CDE presence/absence data including
from wetlands, springs, and reaches of the McKay River with differential gauging
measurements. The final models included 11 explanatory variables, the most important being
wetland class, DEM, surface wetness index, slope, permeability (derived from surficial geology)
and NDVI. We selected the top five individual classifier models (CDE presence/absence), each
of which had slightly different results (particularly for riverine GDEs), and created an ensemble
map of GDE probability (with five classes from low to high). GDEs primarily occur along the
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lower reaches of rivers, riparian areas and fens. Maps are presented both with and without
non-vegetated human footprint to visualize the juxtaposition of oil sands footprint with GDE
probability. Future modeling work aims to explore individual model accuracies for certain GDE
classes or sub-classes, evaluate the generalizability of the model by selecting another Study
Area with independent validation data, and test model performance with different subsets of
explanatory variables and spatial resolution of explanatory variable datasets (because the Year |
Study Area likely had the highest quality data within the OSR).

This project has highlighted the ability to leverage existing data to effectively map GDEs in a
portion of the OSR that is fairly well studied. This proof of concept supports the expansion of
GDE mapping to the broader OSR, while recognizing that addressing some data gaps and
ensuring a broader set of test data is necessary to enable successful expansion. The mapping
of GDEs completed to date and the opportunities identified for future application of these
technigques will support the Groundwater Technical Advisory Committee in answering key
questions as they develop a monitoring approach that will evaluate the impact of oil
sands-related stressors on GDEs as a key environmental endpoint.
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Appendix A. OSM Groundwater
Conceptual Models
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Appendix B. Groundwater Indicator
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Review

Table C.1. List of papers included in the biological literature review. Papers are sorted by
indicator category, then by lead author. Papers not included in the text of the literature review
but that provide supporting information for aquatic, terrestrial, and subterranean ecosystems

are listed at the bottom.
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Appendix D. Data Compilation

Table D.1. Full list of datasets compiled to support GDE mapping in the oil sands region.

Categories Data Name
Climate Climate data (Data gap)
GCeography Annual Unit Runoff
Geoaranh Digital Flevation Model (DEM) - Advanced | and Observing
graphy Satellite (ALOS)
GCeography Flow Accumulation - ALOS Derived
Geography Flow Direction - ALOS Derived
GCeography HUC 8,10
GCeography Slope - ALOS Derived
Geography Topographic Wetness Index (TWI)- ALOS Derived
Geology AGS DIG_2023 0017 (Modelled Surfaces of Quaternary Units
NAOS)
ACS REP_99 (Paleogeography,Evaporite Karstification, and Salt
Geology ,
Cavern Potential)
Geology Bedrock (Map 600)
Geology DIG_2023 0017 (Modelled Surfaces of Quaternary Units NAOS)
Geology MAP_632: DIG_ 2022 0031
Geology Permafrost presence
Geology Permeability - derived from geological materials
Quaternary Unit Picks in the North Athabasca Oil Sands (NAOS)
GCeology ,
Reqgion
Ceology Subterranean data (Data gap)
Geology surficial geological maps (bedrock)
Geology surficial geological maps (bedrock) - updated - Maps 618-62]
Groundwater Aquanty: Depth to water tables, bexchange fluxes, groundwater
seepage along the Athabasca River
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https://open.canada.ca/data/en/dataset/a905bafc-74b5-4ec5-b5f9-94b2e19815d0
https://search.asf.alaska.edu/#/
https://search.asf.alaska.edu/#/
https://geospatial.alberta.ca/titan/rest/services/environment/hydrologic_unit_code_watersheds_of_alberta/MapServer
https://ags.aer.ca/publication/dig-2023-0017
https://ags.aer.ca/publication/dig-2023-0017
https://ags.aer.ca/publication/rep-99
https://ags.aer.ca/publication/rep-99
https://ags.aer.ca/publication/map-600
https://ags.aer.ca/publication/dig-2023-0017
https://ags.aer.ca/publication/map-632
https://ags.aer.ca/publication/dig-2018-0008
https://ags.aer.ca/publication/dig-2023-0018
https://ags.aer.ca/publication/dig-2023-0018
https://ags.aer.ca/publication/dig-2013-0002
https://ags.aer.ca/publication/map-618

Categories

Data Name

Base of Groundwater Protection Data (estimated elevation for

Groundwater the base of the deepest formation that is likely to contain
nonsaline groundwater)
Groundwater DIG_2014_0025 (Springs) [Locations, Chemistry]
Distribution of Hydraulic Head in the Peace River / Viking / Bow
Groundwater - - -
Island Hvdrostratigraphic Unit
Groundwater Higher resolution groundwater level (Data gap)
GCroundwater Hydraulic head (Data gap)
Groundwater Kisters Surface and Groundwater data
Groundwater Map 593 (Distribution of Total Dissolved Solids in the Peace River
[ Viking / Bow Island Hvdrostratigraphic Unit)
Groundwater Map 594 (Distribution of Hydraulic Head in the Peace River /
Viking / Bow Island Hydrostratigraphic Unit)
Groundwater Map 596 (Distribution of Total Dissolved Solids in the Grand
Rapids Hydrostratigraphic Unit)
Map 597 (Distribution of Hydraulic Head in the Grand Rapids
Croundwater - - -
Hydrostratigraphic Unit)
Map 612 (Distribution of Total Dissolved Solids in the McMurra
Groundwater - - -
Hydrostratigraphic Unit)
Map 613 (Distribution of Hydraulic Head in the McMurray
GCroundwater - - -
Hydrostratigraphic Unit)
Groundwater Operators/EIAs GW Chemistry
GCroundwater Operators/ElAs Water Levels
Groundwater Spring Compilation (AGS)
Groundwater Spring Compilation (InnoTech)
Croundwater Thalwegs

Groundwater and

Surface water

2022 Water Use Data

Groundwater and

Surface water

EarthFX data (Data gap)

Human Impact Data

Data on land use changes (Data gap)
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https://www.aer.ca/providing-information/data-and-reports/activity-and-data/base-of-groundwater-protection-data
https://www.aer.ca/providing-information/data-and-reports/activity-and-data/base-of-groundwater-protection-data
https://www.aer.ca/providing-information/data-and-reports/activity-and-data/base-of-groundwater-protection-data
https://ags.aer.ca/publication/dig-2014-0025
https://ags.aer.ca/publication/map-594
https://ags.aer.ca/publication/map-594
http://osmdatacatalog.alberta.ca/
https://ags.aer.ca/publication/map-593
https://ags.aer.ca/publication/map-593
https://ags.aer.ca/publication/map-594
https://ags.aer.ca/publication/map-594
https://ags.aer.ca/publication/map-596
https://ags.aer.ca/publication/map-596
https://ags.aer.ca/publication/map-597
https://ags.aer.ca/publication/map-597
https://ags.aer.ca/publication/map-612
https://ags.aer.ca/publication/map-612
https://ags.aer.ca/publication/map-613
https://ags.aer.ca/publication/map-613
https://ags.aer.ca/publication/dig-2014-0025
https://ags.aer.ca/publication/dig-2018-0001
https://www.aer.ca/protecting-what-matters/holding-industry-accountable/industry-performance/water-use-performance/data

Categories Data Name
Landcover Biological data (Data gap)
Landcover Eco AB 10TM - this has 4 scales of ecosite from Agriculture
Canada
FinalEBM - Harvest, Fire, PreHarvest, SitePrep and SiteEquip
Landcover
layers (ABMI)
Landcover Forest Fire Polygons
Landcover Higher resolution thermal data (Data gap)
Landcover Soil Landscapes of Canada

River and Lake Surveys

Isotope Sampling (ISO ABMI)

River and Lake Surveys

RAMP Hydrometric Monitoring Locations

River and Lake Surveys

RAMP Water Quality Monitoring Locations

River Surveys

Electromagnetic (EM31) Surveys (InnoTech/Advisian)

River Surveys

Water quality/LTRN

River Surveys

WSC/RAMP Stream Gauding

Surface Water

Kisters - 2022-23-osm-wetland-monitoring-surface-water-qualit

Surface Water

Surface water/ groundwater interaction (Data gap)

Various

Temporal resolution data (Data gap)

Wetland surveys

OSM Wetland Inventory Pilot Area (ABMI/DUC)
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https://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_data.html
https://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_data.html
https://www.alberta.ca/wildfire-maps-and-data
https://sis.agr.gc.ca/cansis/nsdb/slc/index.html
http://www.ramp-alberta.org/data/map/mapdata.aspx
http://www.ramp-alberta.org/data/map/mapdata.aspx
https://open.alberta.ca/opendata/river-water-quality-index-alberta
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey.html
http://osmdatacatalog.alberta.ca/

Appendix E. Additional Results Figures

Wetland Form 1
Wetland Class
Topogrpahic Roughness 1

Soil Drainage 1

1. Pearson's R
Slope 10
SAGA Wetness Index q -0. . 05
Permeability 1 -0.14 -0.13 0.39 0.28 0.38
0.0

NDVI---0.19 -0.11 -0.31
-0.5

Flow Accumulationq -0.10 -0.10 -0.01 -0.05 -0.01
-1.0
Elevationq 0.05 0.06 -0.36 0.00 -0.33 -0.10
Depth to Waterq 0.02 0.03 029 0.05 024 -0.31 0.18 -0.04 -0.03 -0.36
Bedrockq 022 019 0.19 029 013 -020 023 000 0.06 -0.07 0.04

Aquifer Hosting Sediment -0.18 -0.17 0.10 -0.13 0.16 -0.08 0.08 -0.22 0.07 -0.12 0.14 0.00

Figure E.1. Results of pairwise correlation analysis of initial 13 explanatory variables to be used
in the models. Numbers in the plot show the Pearson correlation coefficient. The explanatory
variables used were: aquifer hosting sediment, bedrock, depth to water, elevation, flow
accumulation, normalized difference vegetation index (NDVI), permeability, SACA wetness
index, slope, soil drainage, topographic roughness, wetland class, and wetland form.
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Figure E.2. Outcome of recursive feature reduction for the top five models showing

optimization of explanatory features.
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RandompForestClassifier(max_depth=4, max_features=0.6, min_samples_|eaf=5,
n_estimators=141, random_state=0)

WetClass WetClass - }—U:’—{
DEM DEM | o |—E|—| o

NDVI D2W A |
Swi SWI A D|0
Permeability Permeability [|
Slope Bedrock |:|
[

D2w SoilDrain 4

Bedrock Slope - ‘O
SoilDrain NDVI I-D-l
000 005 010 015 020 025 030 035 000 005 010 015 020 025 030 0.35

Figure E.3. Random forest classifier weighted feature importance normalized to sum of 1 (left).
Permutation features importance (right).

GradientBoostingClassifier(max_depth=9, max_features=0.3, min_samples_leaf=29,
n_estimators=70, random_state=0)

WetClass WetClass - |—|:|:|—1
DEM DEM | H} ®
Permeability Permeability I—D
NDVI sw{ HH
Slope D2W |-|:H-|
Swi Bedrock |-|:|-|
Bedrock SoilDrain |:|-|
D2W Aquifer ‘
SoilDrain Slope 4 ﬂ-{
Aquifer Flow 4 ‘0
Flow NDVI 4 D—l
000 005 010 015 020 025 030 035 0.00 005 010 015 020 025 030 0.35 0.40

Figure E.4. Gradient boosting classifier weighted feature importance normalized to sum of 1
(left). Permutation feature importance (right).
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AdaBoostClassifier(algorithm='SAMME', learning_rate=0.2320651014940365,
n_estimators=250, random_state=0)

DEM

WetClass l— —{

DEM - O}—|:|:' o

swi Swiq olo

WetClass

Slope Slope -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4

Figure E.5. AdaBoost classifier weighted feature importance nhormalized to sum of 1 (left).
Permutation feature importance (right).

DecisionTreeClassifier(max_depth=6, max_features=0.8, min_samples_leaf=18,
min_samples_split=0.2, random_state=0)

DEM WetClass - }—D:'—{
WetClass DEM A }—|:|:|-| o
Swi D2W H ‘
Slope SWI 4 ‘
D2W Slope - ‘
NDVI A NDVI A ‘
Bedrock - Bedrock - ‘
0.0 0‘1 0‘2 0‘3 0‘4 OjS 0‘0 0‘1 0‘2 0‘3 0‘4

Figure E.6. Decision Tree classifier weighted feature importance normalized to sum of 1 (left).
Permutation feature importance (right).
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ExtraTreesClassifier(max_depth=6, max_features='log2', min_samples_leaf=2,
n_estimators=590, random_state=0)
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020 0.25 0.30 0.35 0.40 0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.05 0.10 0.15

Figure E.7. Extra Tree classifier feature importance. Weighted feature importance normalized
to sum of 1 (left). Permutation feature importance.
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