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ABSTRACT
Freely available high temporal and spatial resolution synthetic aperture radar (SAR) satellite data such
as Sentinel-1 have made it possible for almost near-real time monitoring of surface water extent. We
present a method to track temporal variability in surface water extent, hereafter hydro temporal vari-
ability (HTV) in Alberta, Canada. Multi-temporal Sentinel-1-C band SAR data was used to classify each
pixel in a pixel stack across time into water or non-water. This dataset can tell the percent of time a
given 10 m × 10 m pixel was seen as open water. HTV was then summarized by calculating the per-
centage of the total pixel stack, which was detected as water. Comparison to the waterbodies in the
Government of Alberta Base Features Hydrography Polygon dataset shows that the HTV dataset is
able to differentiate between permanent and recurring lakes as well as capture rivers with a width of
over 30m. It is anticipated that themethodology presented here will be further enhanced and refined
with imagery available for 2018 and beyond, due to now operational Sentinel-1B satellite and future
RADARSAT Constellation Mission (2018), which will both provide improved data opportunities.

RÉSUMÉ
Les satellites à aperture synthétique à haute résolution temporelle et spatiale, dont Sentinel-1, per-
mettent de faire le suivi des étendues d’eau presqu’en temps réel. Nous présentons une méthode,
ci-après appelée variabilité temporelle hydrologique (VTH), qui permet de faire le suivi systématique
de la variabilité temporelle des étendues d’eau de l’Alberta, Canada. Les donnéesmulti-temporelles en
provenance de la bande C du satellite Sentinel-1 ont été utilisées afin de classifier chaque pixel d’une
série temporelle de pixels comme étant soit «eau» ou «autre». Cette série de données temporelles per-
met d’estimer la proportion de temps pendant laquelle un pixel de 10 m est classifié comme étant un
pixel d’eauouautre. Lorsque comparée à la couchededonnéeshydrographiquedebase (BaseFeatures
HydrographyPolygon) produite par la Gouvernement de l’Alberta, laméthode VTHpermet de classifier
les étendues d’eau selon leur hydropériode (e.g., permanent, semi-permanent, saisonnier) en plus de
faire le suivi des cours d’eau d’une largeur de plus de 30 m. La méthode présentée pourra éventuelle-
ment être raffinée en utilisant de nouvelles données produites par le satellite Sentinel-1B qui fut mis
en opération en 2016 ou encore par l’éventuelle RADARSAT ConstellationMission prévue pour 2018.

Introduction

About 9% or 891,163 km2 of Canada is covered by fresh
water, which offers a range of environmental and socio-
economic benefits and services. With fast paced climate
change and increased anthropogenic use of fresh water
resources, scientifically sound and robust monitoring of
these resources is essential. Alberta provides a diverse set
of waterbodies that range fromdeepmountainous lakes in
the west, to ephemeral kettle lakes in the semi-arid prairie
pothole regions, to meandering rivers, to peatlands in the
northern boreal forest areas. Some of these waterbod-
ies are undergoing rapid and irrevocable change due to
anthropogenic pressures, including agriculture, livestock
operations, forestry practices, oil and gas development,
and population growth (Schindler and Donahue 2006).
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It is estimated that up to 70% of wetlands in southern
Alberta have already been drained or permanently mod-
ified (Ducks Unlimited 2017). Additionally, there is evi-
dence that changes in ocean temperatures due to climate
change is starting to contribute to mid-latitude drying in
North America (Hoerling and Kumar 2003). It appears
that anthropogenic and naturally driven climate changes
are both leading towards declining fresh water availability
in Alberta and the western Prairie Provinces, potentially
leading towards a future water crisis (Schindler and Don-
ahue 2006).

With this knowledge, the near-real time monitor-
ing of surface water should be a priority. In-situ lake
level and river measurements along with water polygons
interpreted from air photos are two methods used to
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monitor Alberta waterbodies (Environment and Climate
Change Canada 2015; Alberta Environment and Parks,
Government of Alberta 2004). In-situ measurements,
such as the National Hydrological Service (Environ-
ment and Climate Change Canada 2015), are great for
tracking waterbody fluctuations but it is nearly impossi-
ble to track all of Alberta’s waterbodies. Human photo-
interpreted waterbody inventories, such as the Gov-
ernment of Alberta Base Features Hydrography Poly-
gons (Alberta Environment and Parks, Government of
Alberta 2004) provide great spatial coverage of Alberta’s
waterbodies but are limited to a certain point in time,
which makes tracking lake level fluctuations and recur-
ring waterbodies very difficult. Monitoring waterbodies
using satellite imagery with high spatial and temporal
resolution (Pultz et al. 1997; Pekel et al. 2016; e.g., Sen-
tinel) provides a promising alternative to these meth-
ods as it offers complete spatial coverage and frequent
revisits.

Both optical and radar remote sensing methods are
well suited for identifying standing water (Töyrä et al.
2001; Brisco 2015) due to the low reflectance of water
in the visible to near-infrared (optical) and the specu-
lar reflectance of water (radar). The Copernicus mission
(European Space Agency 2014) with freely available 10-m
resolution radar (Sentinel-1) and optical (Sentinel-2) with
6- and 5-day revisit time, respectively, provides a great
option for near-real time monitoring of waterbodies in
Alberta. Due to the prevalence of summer cloud cover in
Alberta, especially at higher latitudes and altitudes (Wil-
son and Jetz 2016), optical remote sensingmay not be well
suited for consistent waterbody monitoring in Alberta.
This makes Sentinel-1 C band radar the ideal candidate
for tracking fluctuations in Alberta waterbodies’ extents
on aweekly basis. The Sentinel-1 datawith its 6-day revisit
time (as of October 2016) proves to be a great source and
tool for water monitoring as the radar sensor is capable of
detecting standing water (Malenovsky et al. 2012; Brisco
2015) at all times (day and night) and is not limited by
cloud cover or haze.

Synthetic aperture radar (SAR) has a long history of use
for surfacewatermonitoring, floodmapping, andwetland
mapping (Pultz et al. 1997; Töyrä et al. 2001; Townsend
2002; Töyrä and Pietroniro 2005; Brisco et al. 2008, 2009;
Bolanos et al. 2016; Twele et al. 2016). In theory, land and
water are easy to distinguish with SAR due to the specular
reflection of water resulting in low backscatter (Hender-
son and Lewis 1998; Töyrä et al. 2001; Brisco 2015). Land
surfaces in the form of vegetation, bare earth, or human
footprint features will generally have a moderate to high
backscatter signal due to diffuse, or double bounce reflec-
tion (Henderson and Lewis 1998; Töyrä et al. 2001; Brisco
2015). In practice, differentiating land from water can be

hard due to wind-induced roughness in waterbodies, and
varying incidence angles (Bolanos et al. 2016). Given low
wind and consistent incidence angles, image threshold-
ing can be an effective method for surface water identi-
fication (Brisco et al. 2009; White et al. 2014). In other
cases, thresholding combined with texture information
or segmentation algorithms are used to classify standing
water (Martinis et al. 2009; Li and Wang 2015). If there
are many repeat images for an area the standard deviation
(SD) across time, i.e., temporal SD can be useful for iden-
tifying water because water will have a higher SD due to
waves (unless thewater is perfectly calm)while vegetation
backscatter should be relatively constant (the exception
being agriculture; Santoro and Wugmüller 2014; Santoro
et al. 2015).

The key objective for this study is to develop an oper-
ational method for calculating the percent of time a
10-m Sentinel-1 pixel is detected as water throughout the
2014–2017 spring and summer months. Now that the
two Sentinel-1 satellites are fully operational, this method
should be ideal for testing in 2018 spring and summer.
This method should result in a dataset where each value
will represent the percent of time water was detected in
a given 10-m pixel. This dataset, hereafter termed as the
hydro temporal variation (HTV) dataset, can hopefully
differentiate permanent versus recurring lakes, track sea-
sonal expansion and recession of lake boundaries, and
track seasonally flooded areas. Measuring the fluctuation
in waterbody level has been done with SAR for smaller
areas and or individual lakes (Bartsch et al. 2009; Brisco
et al. 2009; Ding and Li 2011; Gstaiger et al. 2012; Yesou
et al. 2016) and it has been done globallywith Landsat data
(Pekel et al. 2016). The proposedHTV product appears to
be one of the first ones created to be applicable for large-
scale, high resolution, multi-temporal mapping of surface
water extent using SAR.

Methods

Data and SAR processing

The HTV dataset was calculated with Sentinel-1 C-band
(S1) SARdata (European SpaceAgency 2014, 2015, 2016).
All S1 images were gathered and processed in Google
Earth Engine (GEE; Google Earth Engine Team 2015).
GEE stores S1 ground range detected scenes, which have
been pre-processed with the Sentinel-1 Toolbox (Sentinel
Application Platform–Sentinel-1 Toolbox). These pre-
processing steps include thermal noise removal, radio-
metric calibration, and terrain correction (Google Earth
Engine Team 2015). S1 images were further processed in
the GEE environment by performing an incidence angle
correction (Gauthier et al. 1998) and smoothing with a
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Table . Summary of chosen water and wind speed thresholds for
HTV dataset calculation.

Water Wind speed Image date
Zone threshold (dB) threshold (km/h) range

grasslands <−. < April, st-October st

boreal <−. < May st-September th

3 × 3 Sigma Lee filter (Lee et al. 2009; credit to Guido
Lemoine for GEE code).

S1 images intersecting with Alberta during ice-free
months were gathered for the time period April 1, 2014–
August 5, 2017 (see Table 1 for what defines ice-free
months). Winter months were not included as most
lakes in Alberta are frozen from October/November to
March/April. Additionally, only images with a 10-m reso-
lution were used, which resulted in the exclusion of HH
or HV polarizations as these images are only available
in 40-m resolution. The VV polarization mode was used
for the analysis as it had far more revisits over Alberta
when compared to the other polarizationmodes (VV-VH,
HH, HH-HV); however, Brisco (2015) and Bolanos et al.
(2016) state that other polarizations are more suitable for
water detection but the VV polarization is still very useful
(Kasischke and Bourgeau-Chavez 1997). This resulted in
a temporal pixel stack of anywhere from 1 to 100 across
Alberta.

The processing of the HTV dataset was split into
2 regions (Figure 1). The first region is the grasslands
region of southeast Alberta, which is predominately cov-
ered by native grasslands or agriculture. The second
region is the boreal (boreal forest) region of northern
and western Alberta, which is dominated by forests.
These regions were delineated using the Alberta natural
regions dataset (Alberta Parks 2015). The grassland and
parkland regions were merged into the grassland region
and the boreal, Canadian Shield, foothills, and Rocky
Mountain regions were merged into the boreal region.
This was done because the differentiation between water
and land is distinctly different for forested areas versus
low biomass grassland areas due to the lower backscat-
ter of grasslands (Quegan et al. 2000; see Figures 2, 3,
and 4).

Four ancillary datasets were used in the generation of
the HTV layer or analysis of the results. Daily wind speed
data from the NCEP Climate Forecast System Version 2
(Saha et al. 2014) was used to remove windy days. The
SRTM 30 m DEM (USGS 2006) was used to derive slope
for a slope mask while the Alberta Biodiversity Moni-
toring Institute (Alberta BiodiversityMonitoring Institute
2016) Human Footprint Inventory 2014 (HFI2014; ABMI
Geospatial Centre 2017) was used for an agriculture and
major roads mask. The Grasslands Vegetation Inventory

Figure . The spatial delineation of the boreal and grasslands pro-
cessing regions with the three Sentinel- images used for thresh-
olding decisions overlaid. The boreal and grasslands regions are
delineated using the Natural Regions of Alberta.

Figure . Errors rate of different Sentinel- backscatter thresholds
for the grasslands test image. Image date from -- with an
average wind speed of . km/h (from the Brooks Environment
Canada weather station). The grey line represents the total error
rate (false water + false land), the green line represents the false
land rate, and the blue line represents the false water rate.
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Figure . Errors rate of different Sentinel- backscatter thresholds
for the boreal  test image. Image date from -- with an
average wind speed of . km/h (from the Lac Le Biche Environ-
ment Canada weather station). The grey line represents the total
error rate (false water + false land), the green line represents the
false land rate, and the blue line represents the false water rate.

(Alberta Environment and Parks 2011), a polygon-based
inventory describing land cover in the grasslands regions
of Alberta, was used to mask out low biomass grasslands.
Lastly, the Government of Alberta Base Features Hydrog-
raphy Polygons (hereafter hydropoly; Alberta Environ-
ment and Parks, Government of Alberta 2004) was used
as a training and analysis dataset.

Sentinel-1 thresholds

To generate the HTV layer, 2 important decisions needed
to be made:

(i) Senintel-1 VV intensity threshold where a pixel is
considered water; and

Figure . Errors rate of different Sentinel- backscatter thresholds
for the boreal  test image. Image date from -- with an
averagewind speed of . km/h (from the Red Earth Creek Environ-
ment Canada weather station). The grey line represents the total
error rate (false water + false land), the green line represents the
false land rate, and the blue line represents the false water rate.

(ii) Wind speed threshold above which data should be
removed from the HTV algorithm.

Three Sentinel-1 images from low wind speed days in
2017 (Figure 1) were analyzed to assess which Sentinel-
1 backscatter threshold resulted in the lowest error rate
for classifying water from land. Training water/land data
was derived from the hydropoly layer. All permanent lakes
were considered as water and land was considered any
area without a hydropoly feature.

Figure 2 shows the error rate of different Sentinel-1
backscatter thresholds for differentiating water and land
in the grasslands region. The lowest error rate (0.101) is
seen at a threshold of –17.5 decibels (dB) with most of the
error coming from false land errors. Figure 3 shows the
error rate for a boreal image (boreal 1) with mixed for-
est and agriculture. The lowest error rate (0.049) is seen
at a threshold of –15.1 dB with most of the error coming
from false water pixels. Figure 4 shows the error rate for a
boreal image (boreal 2) with continuous forest and min-
imal human footprint. A threshold of –13.7 dB generates
the lowest error rate (0.048).

The data in Figure 2 show that an acceptable threshold
for the grasslands region is –17.5 db. For this region it is
expected that there will be an approximate error rate of
10%when classifying water and land. Figures 3 and 4 give
different optimal thresholds for the boreal region (–15.1
and –13.7 dBs, respectively). Since false land error is pre-
ferred over false water error for this algorithm, the lower
–15.1 dB threshold was chosen for the boreal region. Even
with this lower threshold the boreal 2 image still has an
error rate of only 5%. Therefore, in the boreal region we
can expect an error rate of about 5% for classifying water.

Figure 5 shows the trend of increasing Sentinel-1
backscatter values with increased wind speed. A wind
speed greater than 9 km/h was chosen as the threshold
where data would be removed from the HTV algorithm.
This was chosen since 90% of the data points in this
threshold were below the –17.5 dB threshold. The authors
acknowledge that this modeled wind data is too coarse to
pick up onwind gusts or increase in speed over large lakes
and, thus, we see a poor fit between the relation in wind
speed and Sentinel-1 backscatter. However, the main goal
of this threshold is to use “potentially” calm days but it is
known that wind at the time of image acquisitionmay not
have actually been calm.

HTV algorithm

To calculate HTV, each image was first turned into a
binary “water” (1) and “non-water” (0) image. Any pixel
below –17.5 and –15.1 dB for the grasslands and boreal
zone, respectively, was considered water. To account for
lake waves causing higher backscatter values, any pixel
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Figure . Wind speed (km/h) versus Sentinel- VV backscatter (dB) for six waterbodies across Alberta. With a fitted trend line (R = .).

where maximum wind speed, for the day of acquisition,
above 9 km/h was removed (see Figure 5). To account for
low backscatter values on the lee side of mountain slopes,
all pixels with a slope value greater than 15 were removed
from the analysis using SRTM DEM (USGS 2006). This
was done based on visual interpretation of low backscat-
ter values on parallel ridges corresponding to slopes over
15°. All pixels overlapping with cultivation ormajor roads
(the ABMI Human Footprint Inventory for 2014 con-
ditions; Alberta Biodiversity Monitoring Institute 2016)
were assigned a value of zero. Finally, a grasslands mask
was applied by masking out all grassland polygon habitat
types from the Government of Alberta’s Grassland Vege-
tation Inventory (Alberta Environment and Parks 2011).
After all the thresholds and decisions, the binary water
images were summed to get the number of times each
pixel was classified as water. This was then divided by the
number of pixels in the total pixel stack (after masking),
multiplied by 100, and turned into integer format to get
the percent of time a pixel was identified as water.

Comparison to Alberta Base Features Hydrography
Polygons dataset

A comparison was done between the hydropoly layer
and the HTV dataset. To see how the HTV data repre-
sented different waterbody types, permanent lakes, recur-
ring lakes, and rivers were extracted from the hydropoly
dataset. HTV values were extracted for each waterbody
type and the distribution of values was plotted for each
water body type. To test the effect of wind on lake size the
area of permanent lakes was plotted against HTV value

and a Generalized Additive Model curve was fitted to
the data using R statistical software (R Core Team 2013).
Finally, river width versus HTV value was investigated
to determine the minimum river width, which can be
detected byHTVdata. Average river width was calculated
by dividing the area of the river polygons by the length
of the river lines. The mean HTV value was extracted for
every river and compared to river width.

Results

In total, the HTV product created in the GEE environ-
ment used 125 billion pixels in the calculation (temporal
pixel stack × number of 10-m pixels in Alberta). Figure 6
shows the pixel count used for calculations in the HTV
dataset. This result shows a high of 65 for the southwest
and 0 for a strip along Lake Athabasca.

The HTV layer is shown in Figure 7. This represents
the percentage of time each pixel was identified as water.
This layer maps the boundaries of waterbodies and gives
an idea of how permanent they are and how much they
fluctuate yearly or seasonally. Generally, land can be visu-
alized with values of 0–10, recurring waterbodies with
values of 11–65, and permanent lakes with values of
66–100. With this visualization it can be determined if
each lake is permanent or recurring and it can also be used
for delineating the permanent boundaries of lakes and the
dynamic zones of lakes.

In a comparison to the hydropoly layer, the HTV layer
was shown to have a higher value for permanent lakes
with most permanent lakes having a HTV value rang-
ing from 62–87 (Figure 8). Recurring lakes had a peak



6 E. R. DELANCEY ET AL.

Figure . Pixel count of -m pixels used in the HTV calculation (wind speeds over  km/h removed).

distribution of HTV values at about 20 and very few with
values over 60 (Figure 8). The majority of rivers had a
low HTV value of 20–30 but there were some rivers with
HTV values of 95–100, which was very rare in permanent
and recurring lakes. Figure 9 shows an increasing trend
in HTV values as lake size increases with a slight drop
in HTV values for lake sizes of over 1,000 ha. Figure 10
shows a mean HTV value of near zero for any river with
an average width of less than 30 m. Past an average width
of 30 m, the mean HTV value increases sharply to a max
of 80 at an average width of 1,000 m.

The problematic areas for this dataset are the low
biomass grassland areas of southeast Alberta, the Rocky
Mountains (southwest Alberta), and the sand dunes
around Lake Athabasca (northeast Alberta). These areas
have visible false water error but slope and grassland
masking have helped minimize this error.

Discussion

Using the GEE platform allows streamlining and further
advancement of this calculation intensive dataset across
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Figure . HTV for all of Alberta for the  to  time period. HTV values represented in three classes: land (HTV values –)—where
water is never or rarely seen; recurring water (–)—lakes which are seasonal or the area of lake level fluctuation around a permanent
water body; and permanent water (–)—areas with consistent water. Inset areas provide more detail to show the dynamic regions
around permanent lakes.

time and over large areas for any time period (post 2014).
With adequate human footprint information, such as the
ABMI Human Footprint Inventory, the dataset can be
mademore accurate since flat smooth human features can
sometimes be seen as water with Sentinel-1 data.

The comparison to the hydropoly layer shows that the
HTV dataset can differentiate permanent and recurring
lakes (Figure 8). Many permanent lakes are in the HTV
range of 62–87, which indicates that wind is still causing
false land error. Some of the surprising results, such as
low HTV values for permanent lakes, are expected since
the training data used (hydropolys) is not up-to-date and
the polygons do not match up well with the HTV data
in some cases. The resolution of Sentinel-1 (Figure 10)
also allows tracking larger rivers with a width greater than

30 m. Larger, windier permanent lakes may have an even
larger issue with waves as lakes over 1,000 ha show a
small decrease in the percent of time identified as water
(Figure 9). Normally we would expect to see a steady
increase in HTV values with size due to the edge effects of
smaller waterbodies. A potential solution may be to use a
permanent waterbody mask.

A problematic area still resides in the native grassland
area of southeastern Alberta. The noise floor of Sentinel-1
makes it difficult to distinguish smooth or barren grass-
lands from water (Vachon and Wolfe 2008; Liu 2016). To
solve this, grassland areas taken from a detailed grass-
land vegetation inventory were used to mask out these
false water pixels. Another source of error was snow and
ice. The chosen time range for the 2 zones was used to
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Figure . The HTV value distribution for three different waterbody
types from the hydropoly layer. LAKE-PER = permanent lakes,
LAKE-RECUR = recurring lakes, and RIV-MAJ = rivers. Lakes less
than  ha were removed due to inaccurate mapping of the bound-
aries inmany cases and lakes/rivers with HTV values below were
removed as these are likely lakes that no longer exist or recurring
lakes that did not have water in them during the imaging time
period. Note Lake Athabasca was eliminated from these statistics
due to a pixel count of  in some areas of the lake.

minimize times where lakes were frozen. It appears this
range works well except for the far north where visi-
ble ice breakup can be seen on the north side of Lake
Athabasca (northeast Alberta). Snow, ormore specifically,
wet snow is also a source of error because the backscatter
of wet snow and water is similar (Koskinen et al. 1997).
This error is particularly evident in the Rocky Mountain
region of Alberta. Mountain tops with low slope show
HTV values of 30–50 indicating that there is wet snow or
smooth ice there for 30%–50% of the time during May–
September. This error may also occur more frequently in
the northern areas of Alberta and it is acknowledged that

Figure . The HTV value of permanent lakes versus the log of the
lake area in hectares. Fitted curve (blue) with error bounds is gen-
erated with gam method in R Statistical Software (R Core Team,
). Lakes with HTV values of below  were removed. Note Lake
Athabascawas eliminated from these statistics due to a pixel count
of  in some areas of the lake.

Figure . The mean HTV value of rivers from the Government of
Alberta hydropoly layer versus the log of river width in meters. Fit-
ted blue curve (blue) with error bounds is generated with loess
method in R Statistical Software (R Core Team, ).

the inability to distinguish wet snow from water is a limi-
tation of the dataset. Overall, the mean error of each indi-
vidual image water/land classification is expected to be
about 10%withmore error occurring in the grassland and
mountain regions (Figures 2–4). It is expected that heavily
forested areas with limited human development will have
very low error rates of around 5% (Figures 3 and 4).

The biggest improvement that could be made to the
current dataset would be a new data source for wind
speed. The current wind speed data is based off a model
and has a 12 km × 20 km cell size. This means the data
is too coarse to pick up on local variation in wind and
does not necessarily reflect the wind seen at the time of
image acquisition. Figure 5 shows that an increase inwind
speed from theNCEPClimate Forecast Systemdoes cause
an increase in Sentinel-1 backscatter but the relationship
is not strong, likely due to the reasons described above.
Therefore, the wind filter does not remove windy condi-
tion data but rather it removes days that have the poten-
tial for high wind. The main reason for using this data
is its integration in the GEE environment, which allows
for the seamless integration of weather data with remote
sensing data. Weather station data could be used in the
algorithm but this would require the generation of 640
daily wind speed grids and the loading into the GEE envi-
ronment. Weather station data also presents the issue of
sparse station data in northern Alberta. This algorithm
should intend to use the best weather data available for
the given area. For example, the algorithm used anywhere
in the United States should use the Real-time Mesoscale
Analysis Products, which give hourly weather analysis at
a 2-km scale (National Centers for Environmental Predic-
tion 2013).

Overall this study provides a methodological frame-
work for building a surface water variation dataset within
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the GEE environment. Backscatter thresholds will vary
from region to region and more work on optimal water
classification thresholds will be valuable for improving
the accuracy of these datasets. Further exploration into
the proper use of wind speed data and new wind speed
data will be vital to improving the results. Incorporat-
ing wind direction with respect to sensor look direction
(Ulaby et al. 1986) may also be a potential advancement
for the HTV algorithm.

Conclusions and outlook

The results of the HTV layer demonstrate great potential
for monitoring the annual and inter-annual variation of
surface water extent in Alberta. Overall, this dataset pro-
vides an example of a robust methodology for develop-
ing a hydro temporal variation dataset. The 2014–2017
time period may be limited in some areas due to a lower
number of available images, i.e., lower pixel count. This
methodology is promising for 2018 data and future years
as the Sentinel-1 archive continues to grow. Eventually,
this process could lead to dynamic surface water maps
with weekly-biweekly updates. This near real time dataset
could then be summarized into the HTV dataset yearly
to get a similar product to the 1 described in this arti-
cle. Theoretically, thismethodology could be adjusted and
applied globally, although mountainous areas and bar-
ren low biomass ecosystems will need further testing and
assessment, as they may produce more spurious results
than native vegetation, higher biomass ecosystems. This
method could possibly be advanced with the RADARSAT
Constellation Mission (RCM; Canadian Space Agency
2017) due to the higher temporal resolution, greater avail-
ability of HH andHV polarizations, and lower noise floor
compared to Sentinel-1. The combination of freely avail-
able Sentinel-1 SAR, future RCMdata, andGEE’s process-
ing power provides an exciting future for weekly, seasonal,
and yearly dynamic surface water maps.
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