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The Bioacoustic Unit is a collaboration between the Bayne Lab at the University of Alberta and the Alberta 

Biodiversity Monitoring Institute . The Bioacoustic Unit is the authority on best practices for using acoustic 

technology in the province and a leader in the application of wildlife acoustic data to environmental management 

and research needs. In addition, our team is actively engaged in research to enhance our methodologies and 

advance our tools to better understand our natural acoustic environment. Clients regularly partner with us to 

assist with their wildlife monitoring needs. Our involvement varies from client to client and spans the full range 

of services from simply providing information to conducting a full research project on their behalf. 

Our services  include: 

Listening 
We can collect the data you need, or help you do it yourself. We provide ‘how to’ protocols that will guide you 

through the process of deploying, programming, and retrieving your audio data. Or, let us do it for you!

Analyzing 
We have a team of expert taxonomists that will translate your audio recordings into species identifications. 

In addition, our researchers have developed automatic recognizers that quickly process audio files to detect 

multiple species of conservation concern. We encourage all clients to contribute their data to our publicly 

available data set. However, we understand that some clients may be bound by confidentiality issues that 

preclude this. The Bioacoustic Unit is therefore flexible in how raw data is disseminated.

Reporting
Once the audio recordings have been translated into species identifications, we will prepare a report that fully 

describes the results. Each report will be accompanied by the full data set of species identifications.

Discovering
We are committed to providing leading edge bioacoustics services. As such, we’re always striving for excellence 

and innovation. Check out our current bioacoustic research to learn more about where we’re headed in the field!

For further information please visit: http://bioacoustic.abmi.ca/
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Conservation management is impeded by the lack of baseline data for many non-passerine, cryptic, or nocturnal 

species that are inadequately sampled by traditional monitoring programs. The recent rise of bioacoustic 

technology, including autonomous recording units (ARUs) and automated signal recognition software provide 

an opportunity to use archived bioacoustic datasets to fill baseline data gaps for rare and/or nocturnal species. 

We extracted detections from a large bioacoustic database using automated signal recognition software and 

boosted regression tree models to build regional home range selection and territory selection models for 

the Common Nighthawk (Chordeiles minor ), a declining aerial insectivore for which there is minimal existing 

data. We found Common Nighthawk home range selection and territory selection to be explained by different 

environmental variables. Home range selection was primarily explained by landscape scale geographic and 

climate variables and some avoidance of wetland areas. Territory selection was also strongly influenced by 

landscape scale climate variables,  proportion of seismic lines, and areas with minimal poor fen. Mean January 

temperatures and the proportion of pine forest were the only environmental variables that had relative 

influence (> 3.5) for both home range and territory selection, with the marginal effect of pine forest increasing 

sharply after a threshold of approximately 30% pine in the surrounding 3 km for both selection models. The 

importance of landscape scale variables relative to local scale variables was higher for both home range and 

territory selection, although the magnitude of importance of landscape scale variables was higher for home 

range selection. Our results provide wildlife managers with guidance on where Common Nighthawks may be 

found in the boreal forest during the breeding season, with selection for cold, dry, northern landscapes, pine 

forests, and avoidance of wetland areas which is contrary to results for other biomes. The strong influence 

of landscape scale variables emphasizes the importance of landscape scale conservation for highly-mobile 

species with large home ranges. Our case study also highlights the value of archived bioacoustic datasets for 

conservation of understudied species.
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Ecological monitoring is imperative for the management 

of wildlife populations, but species with cryptic or 

nocturnal life histories create logistical complications 

for surveys. As a result, there is a lack of information 

about some wildlife populations in Canada, which in turn 

hinders effective wildlife management and conservation. 

The use of habitat selection models to delineate critical 

habitat (i.e., habitat essential for species conservation) is 

one of the core tools of federal species at risk legislation 

in Canada and the US (Hagen & Hodges 2006); however, 

defining critical habitat requires, at minimum, information 

on the basic habitat associations of the species of interest 

(Rosenfeld & Hatfield 2006).

Recently, bioacoustic technology has presented an 

alternative data collection method for obtaining baseline 

data on understudied species, which can then be used to 

study habitat associations (Blumstein et al. 2011; Shonfield 

& Bayne 2017). Autonomous recording units (ARUs) 

are self-contained audio recording devices that can be 

deployed in remote locations and programmed to collect 

time-series data at any time of day for long periods of 

time. The acoustic recordings collected by ARUs can then 

be processed by automated signal recognition software 

(hereafter “recognizer”) to build a baseline dataset of 

detections for a target species (de Oliveira et al. 2015; 

Katz et al. 2016).

Introduction

(Knight, 2017)
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Using ARUs for biological monitoring and research has 

many benefits, including the collection of permanent 

acoustic recordings that can be archived and used to study 

other species or ecological phenomena at a later date. The 

Common Nighthawk (Chordeiles minor ) presents an ideal 

opportunity to use archived ARU data for baseline dataset 

development. The crepuscular nature of the Common 

Nighthawk precludes individuals from detection on most 

traditional point count surveys (Environment Canada 

2016), yet their simple, consistent, and frequent calls make 

them highly detectable with automated signal recognition 

software (Knight et al. in prep). Furthermore, the Common 

Nighthawk is one the least understood bird species 

in North America and is listed as ‘Threatened’ under 

Canada’s Species at Risk Act due to steep population 

declines (Environment Canada 2016). Initial national 

habitat models using existing sparse baseline data 

suggest the boreal forest may support particularly dense 

populations in Canada (Hache et al. 2014); however, the 

ecology and habitat associations of Common Nighthawks 

in the boreal forest are almost entirely unknown (Brigham 

et al. 2011).

We used recognizer data from six bioacoustic projects 

conducted in 2015 in northeastern Alberta’s boreal forest 

to build the first predictive habitat model for Common 

Nighthawks in the boreal forest. First, we built a baseline 

data set for northeastern Alberta by extracting Common 

Nighthawk detections from over 200,000 ARU recordings 

collected in 2015 using automated signal recognition 

(Upham-Mills, 2017)
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software. Next, we characterized the environmental 

variables at each of the 1,082 ARU locations at a local 

and a landscape scale from a variety of remote sensing 

datasets. We used boosted regression tree models 

to examine which environmental variables explained 

variation in home range habitat selection and territory 

habitat selection. We predicted that Common Nighthawks 

would select for different environmental variables at the 

home range and territory scales, and that environmental 

variables at the landscape (3 km) scale would have a 

stronger relative influence on home range selection than 

local (300 m) variables, while local variables would have a 

stronger relative influence on territory selection.

We defined our study area in northeastern Alberta as a 4,700 

km2 area within Alberta’s Lower Athabasca Planning Region 

(LAPR), which  included the sampling locations of most of the 

six archived bioacoustic projects (Figure 1). The study area was 

primarily within the Central Mixedwood Natural Subregion 

(Natural Regions Committee 2006) and the boreal plains 

ecozone (Marshall et al. 1999). The landscape was characterized 

by a mosaic of upland forest types, lowland peat bogs, and fens. 

At the time of study, the region was subject to frequent and 

widespread disturbance, including active forestry, oil and gas 

development, and wildfire.

Figure 1. Locations of archived autonomous 

recording units (ARU) used for Common Nighthawk 

habitat modelling in northeastern Alberta, Canada.

Study Area

Methods

(Image Retrieved From: http://www.ramp-alberta.org/river/

boreal/canada.aspx)
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Acoustic Data Collection
We selected acoustic data collected by ARUs (SM2, SM2+, and 

SM3; Wildlife Acoustics Inc.) across six different projects at 

1,081 ARU stations (Appendix 1). Technicians deployed all ARUs 

according to a standardized protocol (Lankau 2015) between 

June 1 and July 31, 2015 for a minimum of two days at each site. 

The recording schedule varied across the six projects, but 

all recordings were 10 minutes (Appendix 1). We used Song 

Scope (Wildlife Acoustics 2011) software to extract Common 

Nighthawk detections from ARU recordings. We created a 

recognizer by training Song Scope with high quality clips of 138 

Common Nighthawk calls collected from northeastern Alberta 

and south-central British Columbia. We used the recognizer 

to scan the recordings from all projects using a minimum 

score threshold of 70 and a minimum quality threshold of 30. 

We selected a minimum score threshold of 70 to minimize the 

number of false positive detections and to limit the detection 

radius at each ARU station to approximately 300 m to avoid 

overlap between adjacent ARU stations (unpublished data). 

We have previously found that presence-absence recall of the 

recognizer at a score threshold of 70 is approximately 70% 

per recording (see Knight et al. in review a for details), with the 

remaining 30% likely explained by a difference in detection 

radius between the recognizer and a human listener. We then 

visually verified all potential Common Nighthawk detections 

identified by Song Scope to confirm whether they were true or 

false hits.

Environmental Data Collection
We extracted 60 environmental variables for each ARU 

station and 789 random points with the LAPR from seven 

remotely sensed datasets (Appendix 2). We chose the 

avian habitat classification dataset for all upland variables 

because it provided information on both dominant tree 

type and major seral stage (Martin-Demoor & Mahon 2014). 

We chose an enhanced wetland classification dataset for 

lowland variables including major wetland types because 

it has high accuracy for peat wetland classification (Ducks 

Unlimited Canada 2011). We chose the human footprint 

inventory (Alberta Biodiversity Monitoring Institute 2014) 

because it was available as hand delineated vector layers. 

Finally, we also included variables from the soil landscapes 

of Canada database (Schut et al. 2011), a derived light 

detection and ranging (LiDAR) dataset for vegetation 

structure (Coops et al. 2016), climate surfaces (Hamann et 

al. 2013), and the natural subregions classification system 

(Natural Regions Committee 2006).

We extracted each variable with one of several methods 

depending on the data type (categorical or continuous). 

We extracted all categorical raster or polygon variables 

as proportions within a specified radius and all continuous 

raster variables as the mean value within a specified 

radius. The exception was natural subregion, northing, and 

easting, which we calculated as single values at the ARU 

station.

(Knight, 2017)
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Statistical Analysis
Very little is known about Common Nighthawk habitat 

associations in the boreal forest; to determine the most 

important covariates we used an exploratory boosted 

regression tree (BRT) modelling approach. A BRT model 

uses machine learning to maximize the predictive 

performance of the model by combining regression trees 

with boosting (Elith et al. 2008). The regression trees 

fit the explanatory variables to the response variable 

by recursively splitting the data into homogenous 

rectangular groups and fitting a constant for each 

explanatory variable to each group (De’Ath & Fabricius 

2000). Regression trees are well suited for modelling 

complex ecological data because they are insensitive to 

covariance, outliers, and missing values while considering 

complex interactions between any data type (e.g., 

numerical or categorical). The boosting improves the 

predictive performance of the regression trees by 

iteratively fitting regression trees in a forward stagewise 

process to reduce deviance (Elith et al. 2008). 

Prior to habitat modelling, we checked for sampling bias 

in our sampling design by comparing ARU stations to 1000 

random locations within the study area. We conducted 

this comparison because the archived acoustic data used 

to build our dataset was collected across six different 

projects, each with different objectives.  Therefore, 

we may not have adequately sampled the range of 

environmental variables in our study area. To ensure 

adequate sampling, we plotted the distribution of each 

continuous environmental variable at random locations 

and ARU stations using violin plots and checked for any 

variables that did not overlap. We assessed sampling 

For variables measured within a specified radius, we 

extracted features at two scales. We defined the local 

scale as a 300 m radius surrounding each ARU station 

because 300 m is the approximate detection radius of the 

recognizer and radius of a Common Nighthawk territory 

(unpublished data). We defined the landscape scale as 

a 3 km radius surrounding each ARU station because it 

was an order of magnitude larger than the local scale and 

members of the nightjar family are known to forage at 

least 3 km from their territory (Armstrong 1965; Brigham 

1989; Brigham et al. 2011). We did not extract variables 

at the territory scale for datasets with a raster cell size 

greater than the territory scale radius, or extract variables 

that covaried (correlation coefficient > 0.9; 300 m; climate 

layers and soil landscapes of Canada).

(Knight, 2017)

P.  |  09



bias of our only categorical variable, natural subregion, by 

assessing the map coverage within our study area (Figure 

1).

We built two BRT models to address the complex life 

history and spatial use of Common Nighthawks. The 

first model was a home range selection model that used 

presence or absence of Common Nighthawk detection as 

the response variable with a binomial distribution. The 

second model was a territory selection model that used the 

presence or absence of Common Nighthawk wing-boom 

as the response variable with a binomial distribution. Male 

Common Nighthawks defend a small territory for mating 

and nesting with aerial displays and frequent vocalizations 

(Brigham et al. 2011), but individuals can also vocalize 

while travelling to foraging or roosting sites forage 

several kilometres from the territory. Therefore, Common 

Nighthawk presence is likely indicative of home range 

selection, but vocalization rate may be a more informative 

proxy for habitat types that are important for Common 

Nighthawk breeding sites.

We accounted for detectability and differences in effort 

between ARU stations by including a summed detectability 

variable as an offset in all models. First, we calculated 

a detectability parameter by using Akaike information 

criterion (AIC; Burnham & Anderson 2003) to select 

the most parsimonious parametric survival model that 

accounted for differences in recording day of year and time 

of day. The detectability parameter calculation selected 

was:

p=1-ea
i

+b
i

+d(a
i
  × b

i
)

where a is the negative of the duration of the recording, 

and b is a statistic from the survival model that 

includes time of day and day of year, and d indicates the 

interaction between the two terms. We then calculated 

the detectability parameter of each recording, summed 

the detectability parameters at each survey location, and 

scaled the results from 0 to 1 to produce an effort offset 

that accounted for differences in the number of recordings 

and recording schedule across ARU stations.

To determine the optimal settings for the BRTs, we 

examined all possible combinations of a range of learning 

rates and tree complexity values for each of the two BRTs 

following Elith et al. (2008). The learning rate determines 

how much each successive tree contributes to the overall 

growing model, while tree complexity controls the depth of 

interactions between explanatory variables. We selected 

the combination of learning rate and tree complexity with 

the lowest residual deviance and at least 1,000 trees. We 

used a bag fraction of 0.75 for all models. The number of 

trees was determined by the lowest residual deviance 

across ten cross-validation folds. We also used 10-fold 

cross validation to assess the predictive performance 

of each BRT, using the predictive deviance relative to 

initial deviance to assess variation explained, the receiver 

operating characteristic (ROC) area under the curve 

(AUC) to assess model fit, and the difference between 

the training ROC AUC and the cross-validation ROC AUC 

to check for overfitting (Elith et al. 2008). We plotted the 

nine environmental variables with the highest relative 

influence for each model to examine the direction of the 

strongest explanatory variables. We interrogated pairwise 

interactions between environmental variables and 

reported any interactions with a multiplicative strength 

P.  |  10
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Results
Sampling Bias 
We found minimal evidence of a bias in environmental 

variable sampling when we pooled the ARU stations 

across the six archived bioacoustic projects (Figure 

2). None of the 55 continuous variables we considered 

had overlap in their sampling distribution. The archived 

bioacoustic dataset was somewhat biased in that it 

did not sample the upper ranges of the proportion of 

road within a 300 m and 3 km radius. There was also a 

sampling bias within the archived bioacoustic datasets 

across the natural subregions in the study area (Figure 

1). The majority (92.4%) of the 1,082 ARU stations were 

located in the central mixedwood subregion, although the 

central mixedwood was the dominant natural subregion 

in the study area. The remaining ARU stations were in 

the Athabasca plain subregion (5.8%), the lower boreal 

highlands (1.1%), and the dry mixedwood (0.7%). There 

were no samples collected within the upper boreal 

highlands or the kazan uplands, although the latter natural 

subregion comprised a small proportion of the study area.

greater than 2.

Finally, we tested for a difference in explanatory power 

between spatial scales with paired Wilcoxon signed-

rank tests for each BRT, including only those variables 

that were sampled at both scales. We scaled the relative 

influence of the 25 variables that were common between 

scales and model type by computing the sum of the 

relative influence of these variables (i.e., we removed the 

relative influence of those variables that only existed 

at only one scale). We conducted four paired Wilcoxon 

signed-rank tests. The first two tests compared the 

relative influence of 300 m scale variables to 3 km 

variables for each of the habitat selection models (home 

range and territory) to determine which scale explained 

the most variation for each of the models. The second two 

tests compared the relative influence of the variables 

within the home range selection model to those in the 

territory selection model for each of the two variable 

scales (300 m and 3 km), to determine whether either scale 

was more important for a particular order of selection.

Environmental variable extraction was done in Geospatial 

Modelling Environment (Beyer 2014) and ArcGIS 10.3 (ESRI 

2012). Statistical analyses was conducted in R version 3.3.1 

(R Core Team 2016), with the dismo library h (Hijmans et al. 

2017).

(Knight, 2017)
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Home Range Selection
Common Nighthawks were detected at 388 of the 

1,082 ARU stations surveyed. At ARU stations where 

Common Nighthawks were detected, the mean number 

of vocalizations detected was between 1 and 5,174, with a 

mean of 252 (SD=637). After correcting for recording effort 

and detectability, the number of vocalizations detected 

per recording was between 0.01 and 52.66, with a mean of 

2.63 (SD=6.57).

We used a learning rate of 0.01 and a tree complexity 

of 5 to minimize the predictive deviance of the habitat 

selection model (Table 1). The global model had 3,100 trees, 

with a total mean deviance of 1.30 and cross validation 

predictive deviance of 0.68 (se=0.03), meaning that the 

global model explained 48% (se=3%) of the variation 

in the data. The ROC AUC was 0.99 in training and 0.92 

(se=0.01) in 10-fold cross-validation, suggesting excellent 

prediction and moderate but not excessive overfitting. The 

cross-validation correlation was 0.75, also suggesting good 

prediction.

The location of the ARU station had a strong influence 

on Common Nighthawk home range selection, with 

northing as the strongest predictor (relative influence 

18.48), easting as the fourth strongest predictor (relative 

influence 4.33; Table 2, Figure 3), and home range selection 

strongest in the northwest of the study area. Climate 

also had a strong influence with a greater marginal 

effect on home range selection at ARU stations with 

lower mean January temperature (Co; relative influence 

= 17.62). The proportion of pine forest within 3 km was 

the third strongest predictor (relative influence 5.66), 

with a negative marginal effect on habitat suitability at 

Figure 2. Distribution of environmental variables extracted for 

Common Nighthawk modelling at random locations within the 

study area and at sampled ARU stations. Most variables were 

measured as proportion within a radius of the scale described 

in the label. Mean January temperature (degrees Celsius), mean 

annual precipitation (mm), and % sand were measured as the 

mean value within a 3 km radius. Northing and easting are point 

values in NAD 83 UTM zone 12 N. 

Multi-scale Selection of the Common Nighthawk
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stations with less than approximately 30% pine within a 3 

km radius. Wetland variables, particularly the proportion 

of rich fen, bog, and poor fen all had influence on territory 

selection, with the marginal effect on home range selection 

0 or negative, except for at ARU stations with less than 

10% rich fen or 0% bog in the surrounding 3 km. There were 

strong interactions between all the top-ranked predictors, 

particularly mean January temperature and northing, 

which could explain the high relative influence of these two 

variables (Table 3).

Figure 3. Environmental predictors of home range 

selection in a boosted regression tree (BRT) model. The 

top nine of 56 predictors are shown, as ranked by relative 

influence in the model (shown in parentheses). Variables 

are measured as proportion within a radius of the scale 

described in the label. Mean January temperature is the 

mean value within a 3 km radius and is measured in degrees 

Celsius. Northing and easting are point values in NAD 

83 UTM zone 12 N. Y axes are on the logit scale and are 

centered to have zero mean over the data distribution.

Territory Selection
Common Nighthawk wingbooms were detected at 154 of 

the 1,082 ARU stations surveyed. At ARU stations where 

Common Nighthawk wingbooms were detected, the 

mean number of wingbooms detected was between 1 and 

210, with a mean of 22.64 (SD=38.90). After correction 

for recording effort and detectability, the number of 

vocalizations detected per recording was between 0.003 

and 2.97, with a mean of 0.25 (SD=0.46).

We used a learning rate of 0.005 and a tree complexity 

of 2 to minimize the predictive deviance of the habitat 

selection models (Table 1). The performance of the 

territory selection model was similar to the home range 

selection model. The global model had 1,700 trees, 

with a total mean deviance of 0.82 and cross validation 

predictive deviance of 0.044 (se=0.02), meaning that the 

global model explained 46% (se=3%) of the variation 

in the data. The ROC AUC was 0.99 in training and 0.93 

(se=0.01) in 10-fold cross validation. The cross-validation 

correlation was 0.69.

Climate variables had a strong influence on Common 

Nighthawk territory selection as well, with mean annual 

precipitation as the strongest predictor (relative influence 

18.88), a combined relative influence of 25.30 (Table 

2, Figure 4). Common Nighthawk territory selection 

was high at low mean January temperatures and ARU 

stations with low mean annual precipitation, then dropped 

sharply to no marginal effect above -20 Co and 420 mm 

precipitation. The proportion of seismic lines had a strong 

positive effect on Common Nighthawk territory selection 

(relative influence = 10.47), with a positive marginal 

effect at ARU stations with more than 7% seismic lines 
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in the surrounding 300 m. Wetland variables, including poor fen and total wetland within 3 km were also important, with 

high territory selection at ARU stations with minimal wetland, dropping sharply to no marginal effect with any wetland on 

the landscape. Upland variables, including deciduous forest, pine forest, and mixedwood forest were also important, with 

a strong positive marginal effect at ARU stations that were completely deciduous within a 300 m radius and a negative 

marginal effect at ARU stations with less than 5% mixedwood forest within 3 km. Similar to home range selection, there was 

a negative marginal effect on territory selection at ARU stations with less than 30% pine in the surrounding 3 km. Territory 

selection varied across the natural subregions (relative influence 4.64), with a positive marginal effect in the lower boreal 

highlands, and dry mixedwood, and a negative marginal effect in the central mixedwood and Athabasca plain. There were less 

interactions in the territory selection model, most of which did not include the strongest predictors in the model (Table 3). Of 

the top predictors in the model, the proportion of seismic lines had interactions with several other strong predictors including 

mean annual precipitation (16.81) and natural subregion (3.10).

Figure 4. Environmental predictors of Common Nighthawk territory selection in a boosted regression tree (BRT) model. 

The top nine of 56 predictors are shown, as ranked by relative influence in the model (shown in parentheses). Variables are 

measured as proportion within a radius of the scale described in the label. Mean January temperature (degrees Celsius) and 

mean annual precipitation are measured as the mean value within a 3 km radius. Natural subregion is a point value and are 

coded as 1 = Athabasca Plain, 2 = Central Mixedwood, 3 = Dry Mixedwood, 4 = Lower Boreal Highlands. Y axes are on the logit 

scale and are centered to have zero mean over the data distribution.

Multi-scale Selection of the Common Nighthawk
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The rise of bioacoustic technology has created large 

archived datasets of acoustic recordings that have the 

potential to fill baseline data gaps for understudied 

species that communicate acoustically. We used six 

archived bioacoustic projects and automated signal 

recognition software to build a baseline dataset for 

Common Nighthawks in the boreal forest. Our resultant 

dataset had an order of magnitude of more detections 

than previously existing datasets (Hache et al. 2014). 

We used this new baseline dataset to model Common 

Nighthawk habitat selection in the boreal forest for the 

first time and examined the influence of scale on home 

range and territory selection. Using an archived dataset 

DiscussionInfluence of Scale
There were 25 environmental variables in each model 

that were measured at the 300 m and 3 km scale (Table 

1). Contrary to our hypothesis, environmental variables 

measured at the 3 km scale had a greater relative influence 

on habitat selection than environmental variables 

measured at the 300 m scale in both the home range and 

territory selection BRT models (V=0, P < 0.001; V=65, P = 

0.007 respectively; Figure 5). There were no differences in 

relative influence between the home range selection and 

the territory selection models for either the 300 m or the 3 

km scale variables (V=163, P = 0.72; V=191, P = 0.46). For the 

home range selection model, the total relative influence 

of the 3 km scale variables was 60.17 and the total relative 

influence of the 300 m scale variables was 39.83. For the 

territory selection model, the total relative influence of 

the 3 km scale variables was 56.65 and the total relative 

influence of the 300 m scale variables was 43.35.

Figure 5. Relative influence of environmental variables measured at the local scale (300 m radius) and landscape scale (3 km radius) 

on Common Nighthawk home range selection and territory selection.
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for new objectives can lead to sampling bias; however, 

we found minimal sampling bias in the environmental 

variables included in our analysis except for our sampling 

of natural subregion; therefore, caution should be used 

when extrapolating the results of our study to natural 

subregions in Alberta other than the central mixedwood.  

Further sampling is needed to fill in some gaps in coverage 

of certain covariates as well.

Common Nighthawk home range selection and territory 

selection were related to different environmental 

variables, as expected given that Common Nighthawks 

defend small territories where they are highly active, 

but can forage far from the territory within large home 

ranges (Ng 2009). Even songbird species, which are 

traditionally thought to fulfill their life history within their 

territory boundaries (Nice 1941), can use areas outside 

their territory with differing habitat associations. For 

example, endangered Golden-Winged Warblers use 

mature forested areas for perching and foraging outside 

their early-successional forest territories (Vermivora 

chrysoptera; Streby et al. 2012) and Wood Thrush roost 

in denser vegetation than their defended territory 

(Hylocichla mustelina ; Jirinec et al. 2016). Examining 

habitat selection at multiple hierarchical scales is 

important for identifying the habitat characteristics 

associated with limiting parts of a species’ life history 

because the characteristics selected for at the second-

order scale (Johnson 1980) are often different from the 

characteristics selection for at the third-order scale 

(Mayor et al. 2009). The strong relative influence of 

broad geographic and climatic variables at the second-

order scale demonstrated here suggest that third-order 

selection is particularly important for highly-mobile 

species with large home ranges like the Common 

Nighthawk that may not have strong selection for more 

specific landcover types at the second-order scale. 

All previous habitat studies for Common Nighthawks 

have been at the second-order or nest microhabitat 

scale. One recent study in Ontario’s boreal forest 

used a second-order occupancy modelling framework 

(MacKenzie et al. 2002) and found no difference in 

habitat association between forest types or between 

open wetlands, clearcuts, and burns; perhaps because 

Common Nighthawks in that region only select for those 

environmental features at third-order scales.

Except for the recent study by Farell et al. (2017), all 

previous regional Common Nighthawk habitat selection 

studies have been restricted to the southern areas 

of the range (New Mexico: Pidgeon et al. 2001; south 

Saskatchewan: Ng 2009; southeast Wisconsin: Viel 

2014; USA shortgrass prairie: McLachlan) making 

comparison between habitat associations difficult. One 

contrast of our results that stands out is that Common 

Nighthawks did not select for or negatively selected for 

various types of wetlands both at the home range and 

the territory scale. Ng (2009) has previously shown that 

Common Nighthawks are more abundant at grassland 

sites that are close to waterbodies and Common 

Nighthawks are known to forage over waterbodies for 

emergent aerial insects in southern areas (Brigham 

et al. 2011). In the boreal forest, Common Nighthawks 

may not be associated with wetland and aquatic 

areas because insect availability is not restricted 

to waterbodies and diet sample analysis suggests 

Common Nighthawks are not reliant on insects of 

aquatic origin (Knight et al. in review b). Alternatively, 

we may have found a negative relationship between 

waterbodies and Common Nighthawks because 
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Common Nighthawks may be silent during foraging and 

the data collection method we used relies on acoustic 

detections. Brigham et al. (2011) have stated in the Birds of 

North America account that “Nighthawks seem to exploit 

water sources for abundant insects and it is important 

to learn the degree of this dependency” and our results 

suggest that this dependency may not extend to the 

boreal biome. Habitat selection studies in other areas 

of the boreal forest should further explore a potential 

dependency on waterbodies for foraging.

Some of the strong predictors of territory selection 

found here can be related to Common Nighthawk nest-

site characteristic studies, which have unanimously found 

that nests are located in areas of bare ground (Lohnes 

2010; Hausleitner & Wallace 2012; Allen & Peters 2012; 

Jennifer 2015). We found that mean annual precipitation 

(MAP) was the strongest predictor of territory selection, 

likely because lower precipitation causes lower primary 

productivity and thus more open areas for nesting sites. 

Common Nighthawks may also be associated with areas 

of lower precipitation because they lay their eggs on bare 

ground, and higher precipitation could create a higher 

risk of nest failure (Fisher et al. 2015). We also found 

Common Nighthawk territory selection to be strongly 

associated with seismic lines, which may also provide 

open areas for nesting sites. Haché et al (2014) have also 

previously found a positive relationship between Common 

Nighthawk presence and anthropogenic disturbances. 

Contrary to known habitat associations from natural 

history observations (Brigham et al. 2011), we did not 

find that Common Nighthawks selected for recent burns 

or clearcuts. Farrell et al. (2017) have previously shown 

that burns and clearcuts provide habitat for Common 

Nighthawks. We may not have found a strong selection for 

post-burn and post-clearcut areas because the remotely 

sensed dataset that we extracted our environmental 

variables from classified recent burns and clearcuts as 

within 20 years of the disturbance, which may be longer 

than burns and clearcuts provide suitable habitat for 

Common Nighthawks. Further, there may be interactions 

with vegetation type that might mediate post-disturbance 

regeneration and thereby habitat suitability. Future 

research should explore Common Nighthawk habitat 

selection along a post-disturbance temporal gradient in 

further detail.

Regardless of the specific variable, smaller-scale 

environmental variables have been shown to explain 

bird habitat associations during the breeding season 

better than larger-scale variables (Hostetler & Holling 

2000); however, we found that the landscape scale (3 km) 

variables were stronger predictors of Common Nighthawk 

habitat selection. Landscape scale variables explained 

more variation for both the home range selection and 

territory selection model, which was contrary to our 

prediction that landscape scale variables would better 

explain home range selection and local scale variables 

(Noble, 2017)
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would better explain the territory selection model. 

Fisher and Volpe (2011) showed that mammals body size 

is related to scale of habitat selection; however, Mayor 

et al. (2009) suggest that the scale at which animals 

perceive and interact with their environment may in fact 

be a better predictor. In that case, a highly-mobile aerial 

species like the Common Nighthawk would be expected 

select habitat at large scales, regardless of the order 

of habitat selection. Previous habitat selection studies 

have used smaller scales than our study (400 m and 800 

m: Ng 2009; 500 m: Viel 2014; 400 m: Farrell et al. 2017). 

We suggest that future work should include larger scales 

and examine a range of scales to determine the dominant 

scale of Common Nighthawk habitat selection (Holland et 

al. 2004).

The success of our Common Nighthawk case study 

highlights the potential value of archived bioacoustic 

datasets. Luther and Derryberry (2012) have used archived 

bioacoustic recordings to study change in bird community 

over time; however, we know of no other studies that 

have used archived recordings to fill a baseline data gap. 

As bioacoustic technology continues to develop and use 

continues to increase, the archived datasets available 

for such research will continue to grow. We suggest 

practitioners that are developing such bioacoustic 

datasets to include dusk and nocturnal sampling in their 

recording schedules to facilitate future use of the dataset 

for other species, including understudied crepuscular 

species like the Common Nighthawk and other nightjar 

species. We encourage the use of these growing 

bioacoustic datasets for monitoring and research of 

understudied species and species of conservation concern 

if minimal sampling bias is appropriately confirmed prior 

to use.

Conservation Implications
The proportion of ARU stations at which we detected 

Common Nighthawks suggests that this species is more 

common in the boreal forest than previously thought. 

Large-scale habitat modelling by Haché et al. (2014) also 

suggests the boreal forest in Alberta supports high 

densities of Common Nighthawks. Conservation of healthy 

Common Nighthawk populations in the boreal forest may 

be important for conservation of the species, especially 

given the almost 80% decline shown in southern areas 

(Environment Canada 2016). Land and wildlife managers 

should be aware of the potential presence of this federally 

Threatened species, particularly in areas with more than 

30% pine forest and areas with a high density of seismic 

lines. Common Nighthawks nest later than most bird 

species and can have active nests through late August 

(Brigham et al. 2011), so land managers should also conduct 

due diligence to ensure Common Nighthawks nests are 

not disturbed by land clearing or construction activities, 

as per the Species at Risk Act and the Migratory Birds 

Convention Act. Appropriate surveys should be conducted 

to determine the presence of Common Nighthawks, 

as the order of magnitude increases in detections 

(Knight, 2017)
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from our one year ARU study relative to all previous 

detections, suggesting that dawn point count surveys 

are insufficient. Past studies have indicated Common 

Nighthawks often spend time adjacent to or even 

roosting on gravel roads.  In areas dominated by pine 

forests where Common Nighthawks are more abundant, 

changing travel speeds on roads may be warranted if 

collisions with nighthawks become an issue. 

Our study demonstrates that ARUs with a crepuscular 

component in the recording schedule can provide 

high detectability surveys for Common Nighthawks. 

Alberta survey guidelines are also available (Alberta 

Environment and Sustainable Resource Development 

2013), or a Canadian citizen science roadside survey 

protocol (Knight et al. 2017). Existing protocols 

emphasize the importance of documenting wingbooms 

if the survey objective relates to nesting habitat, and 

our study supports this recommendation because 

we found Common nighthawk wingbooms were 

associated with different environmental variables than 

vocalizations. The difference between selected habitat 

variables of our home range selection model and our 

territory selection model also suggests that Common 

Nighthawk habitat selection and use is complex and 

multi-scaled. The present study provides an overview 

of habitat relationships, but more detailed habitat 

selection work is needed to understand the reliance of 

this species on specific habitat features, particularly 

on natural disturbances and human disturbed habitats. 

Future work should consider the difference in selection 

between different habitat components (Johnson 1980). 

Given the reliance of Common Nighthawk surveys on 

acoustic cues, due to the birds’ crepuscular nature, 
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future work should also consider how varying acoustic 

signals can be related to habitat components.
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Learning 

Rate

Tree 

Complexity

Home 

Range  AUC

Home 

Range 

Deviance

Territory 

AUC

Territory 

Deviance

0.01 2 0.915 0.695 0.927 0.437

0.01 3 0.916 0.694 0.932 0.433

0.01 4 0.918 0.699 0.929 0.445

0.01 5 0.920 0.681 0.929 0.446

0.005 2 0.918 0.691 0.932 0.423

0.005 3 0.919 0.681 0.925 0.453

0.005 4 0.920 0.684 0.932 0.438

0.005 5 0.919 0.688 0.932 0.432

0.001 2 0.911 0.722 0.922 0.461

0.001 3 0.917 0.697 0.930 0.441

0.001 4 0.918 0.690 0.932 0.429

0.001 5 0.916 0.692 0.930 0.439

0.0005 2 0.902 0.773 0.922 0.485

0.0005 3 0.914 0.721 0.930 0.459

0.0005 4 0.916 0.712 0.929 0.444

0.0005 5 0.917 0.701 0.932 0.436

0.0001 2 0.878 0.940 0.891 0.613

0.0001 3 0.885 0.911 0.902 0.596

0.0001 4 0.892 0.888 0.909 0.587

0.0001 5 0.899 0.872 0.917 0.574

Table 1. Predictive deviance receiver operating characteristic area under the curve (AUC) of boosted regression tree (BRT) 

models across combinations of learning rates and tree complexity values explored to determine optimal settings for two BRT 

models. The home range selection model used presence or absence of Common Nighthawk call as the response variable and the 

territory selection model used presence or absence of Common Nighthawk wingboom as the response variable. Bold indicates 

the combination of learning rate and tree complexity values chosen for each model. All values presented were from 10-fold cross-

validation.

Tables
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Table 2a. Relative influence of environmental variables included in two boosted regression tree (BRT) models of Common 

Nighthawk habitat selection: home range selection and territory selection. All variables were extracted at two scales (300 

m and 3 km) except variables with a raster cell size greater than the territory scale radius or that covaried with a correlation 

coefficient > 0.9, which were extracted at the 3 km scale only. All variables were included in each of the two models. All 

environmental variables were measured at both territory (300 m) and home range (3 km) scales.

Variable Calculation 

type

Source dataset Home range 

selection 

(300 m)

Home range 

selection     

(3 km)

Territory 

selection 

(300 m)

Territory 

selection 

(3 km)

Deciduous forest Proportion Avian habitat classification 1.18 1.94 4.04 0.31

Mixedwood forest Proportion Avian habitat classification 0.15 0.66 0.03 2.89

White spruce forest Proportion Avian habitat classification 1.10 1.41 0.37 1.66

Jack pine forest Proportion Avian habitat classification 0.84 5.10 0.87 3.42

Sapling forest Proportion Avian habitat classification 0.00 0.19 0.00 0.69

Young forest Proportion Avian habitat classification 0.48 0.54 0.42 0.92

Mature forest Proportion Avian habitat classification 0.31 0.92 0.79 1.11

Old forest Proportion Avian habitat classification 0.71 0.38 0.39 0.18

Forest Proportion Avian habitat classification 0.16 0.50 0.42 0.71

Recent burn (< 20 yrs) Proportion Avian habitat classification 0.00 0.94 0.19 0.36

Old burn (> 20 yrs) Proportion Avian habitat classification 1.24 0.57 2.18 1.20

Recent clearcut (< 20 yrs) Proportion Avian habitat classification 0.28 0.86 0.79 0.50

Old clearcut (> 20 yrs) Proportion Avian habitat classification 0.08 0.42 0.07 0.69

Bog Proportion Avian habitat classification 0.51 3.45 1.63 1.83

Marsh Proportion Avian habitat classification 0.06 1.14 0.01 1.54

Open water Proportion Enhanced wetland classification 0.05 1.41 0.00 1.54

Poor fen Proportion Enhanced wetland classification 2.56 1.88 1.40 5.89

Rich fen Proportion Enhanced wetland classification 4.31 3.63 1.35 2.07

Wetland Proportion Enhanced wetland classification 0.57 0.42 0.49 4.46

Road Proportion Human footprint index 0.28 0.66 0.03 1.60

Seismic line Proportion Human footprint index 1.52 1.52 10.74 1.47

Well pad Proportion Human footprint index 0.72 0.92 0.63 1.28

Linear disturbance Proportion Human footprint index 0.30 0.54 0.41 0.50

Human footprint Proportion Human footprint index 0.55 0.76 0.91 0.54

95% canopy height Mean Forest structure index 3.13 1.13 0.98 0.70
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Table 2b. Relative influence of environmental variables included in two boosted regression tree (BRT) models of Common 

Nighthawk habitat selection: home range selection and territory selection. All variables were extracted at two scales (300 

m and 3 km) except variables with a raster cell size greater than the territory scale radius or that covaried with a correlation 

coefficient > 0.9, which were extracted at the 3 km scale only. All variables were included in each of the two models. All 

environmental variables were measured at home range (3 km) scale only or no scale.

Variable Calculation type Source dataset Home range 

selection  (3 km)

Territory selection 

(3 km)

% Sand Mean Soil landscapes of 

Canada

1.33 1.55

Mean January 

temperature

Mean Climate surface 19.23 4.86

Mean annual 

precipitation

Mean Climate surface 0.89 18.48

Natural subregion Point value (no scale) Avian habitat 

classification

3.87 3.93

Easting Point value (no scale) Natural subregions 3.53 1.98

Northing Point value (no scale) Avian habitat 

classification

18.18 2.01
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Table 3. Pairwise interactions between environmental variables in two boosted regression tree (BRT) models of Common 

Nighthawk habitat selection: home range selection and territory selection. Interaction strength is reported as multiplicative 

strength, and only interactions with multiplicative strength greater than 2 are reported here.

Variable 1 Variable 2 Interaction strength

Home range selection model

Mean January temperature Rich fen – 300 m 9.47

Northing Pine forest – 3 km 8.86

Northing Rich fen – 300 m 8.26

Mean January temperature Bog – 3 km 7.73

Northing 95% canopy height – 300 m 7.46

Easting % sand 6.52

Northing Easting 5.84

Mean January temperature Pine forest – 3 km 3.99

Mean January temperature Natural subregion 3.53

Mean January temperature % sand 3.34

Mean January temperature 95% canopy height – 300 m 2.84

Northing Bog – 3km 2.76

Easting Deciduous forest – 3 km 2.68

Northing Rich fen – 3 km 2.65

Bog – 3 km Deciduous forest – 3 km 2.23

Easting White spruce forest – 3 km 2.08

Territory selection model

Mean annual precipitation Seismic line – 300 m 16.81

95% canopy height – 3 km Recent clearcut – 300 m 13.26

95% canopy height – 300 m Recent clearcut – 300 m 5.01

Well pad – 3 km Seismic line – 300 m 4.82

Mixedwood forest – 3 km Deciduous forest – 300 m 4.01

Bog – 300 m Seismic line – 3 km 3.15

Natural subregion Seismic line – 300 m 3.1

Bog – 300 m Pine forest – 300 m 2.39
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Appendix 1. Details of archived bioacoustic projects used to collect Common Nighthawk baseline data.

Project Focus Data proprietor Minutes of data 

collected/day

Recording schedule Mean  # days 

deployed

Big grid Intensive sample for 

biodiversity in large 

arrays of ARUS in 

areas of oil and gas 

development

Bioacoustic Unit 240 10 minutes on every 

hour

23

Old growth ARU sampling in old 

growth upland habitat

Bioacoustic Unit/

Environment and 

Climate Change 

Canada

240 10 minutes on every 

hour

7

Road Paired on-road and 

off-road sampling 

on roadside survey 

transects

Bioacoustic Unit 480 10 minutes on every 

hour plus 10 minutes 

on, 10 minutes off 

between dusk and 

dawn

2

Songbird 

triangulation

ARU sampling on 

regenerating well pads

Bioacoustic Unit 240 10 minutes on every 

hour

3

Understory 

protection

ARU sampling in 

cutblocks, intact 

forest, and understory 

retention sites

Bioacoustic Unit 240 10 minutes on every 

hour

8

Yellow Rail Yellow Rail monitoring 

in graminoid fens

Bioacoustic Unit 240 10 minutes on every 

hour

13

Appendix
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Appendix 2. Source geospatial datasets used to extract environmental variables for Common Nighthawk habitat modelling.

Name Proprietor Original data 

format (cell size)

Variables 

extracted

Available from (access date) Available reference or 

metadata

Avian habitat 

classification

Environment and 

Climate Change 

Canada

Raster (30 m) Upland forest 

classes

Proprietary – not available Martin-Demoor & 

Mahon 2014

Enhanced 

wetland 

classification

Ducks Unlimited Raster (30 m) Wetland 

classes

Proprietary – not available Ducks Unlimited 

Canada 201

Human 

footprint index

Alberta Biodiversity 

Monitoring Institute

Polygon http://www.abmi.ca/home/

data-analytics/da-top/

da-product-overview/GIS-

Human-Footprint-Land-

Cover-Data/HF-inventory.

html (05-01-2017)

Alberta Biodiversity 

Monitoring Institute 

2014

Forest 

structure index

University of British 

Columbia

Raster (30 m) 95% canopy 

height

Proprietary – not available Coops et al. 201

Climate layers Alberta Biodiversity 

Monitoring Institute

Raster (500 m) Mean January 

temperature, 

mean annual 

precipitation

Proprietary – not available Hamann et al. 2013

Soil landscapes 

of Canada

Raster (1000 m) % sand http://sis.agr.gc.ca/cansis/

nsdb/slc/v3.2/index.html  

(05-01-2017)

Schut et al. 201

Natural 

subregions

Alberta Parks and 

Environment

Polygon Natural 

subre-gion

https://www.albertaparks.

ca/albertaparksca/

management-land-use/

alberta-conservation-

information-management-

system-acims/download-

data/ (05-01-2017)

Natural Regions 

Committee 2006


