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ABSTRACT. Acoustic surveys are a widely used sampling tool in ecological research and monitoring. They are used to monitor
populations and ecosystems and to study various aspects of animal behavior. Autonomous recording units (ARUs) can record sound
in most environments and are increasingly used by researchers to conduct acoustic surveys for birds. In this review, we summarize the
use of ARUs in avian ecological research and synthesize current knowledge of the benefits and drawbacks of this technology. ARUs
enable researchers to do more repeat visits with less time spent in the field, with the added benefits of a permanent record of the data
collected and reduced observer bias. They are useful in remote locations and for targeting rare species. ARUs are mostly comparable
to human observers in terms of species richness, but in some cases, they detect fewer species and at shorter distances. Drawbacks of
ARUs include the cost of equipment, storage of recordings, loss of data if  units fail, and potential sampling trade-offs in spatial vs.
temporal coverage. ARUs generate large data sets of audio recordings, but advances in automated species recognition and acoustic
processing techniques are contributing to make the processing time manageable. Future applications of ARUs include biodiversity
monitoring and studying habitat use, animal movement, and various behavioral ecology questions based on vocalization activity. ARUs
have the potential to make significant advances in avian ecological research and to be used in more innovative ways than simply as a
substitute for a human observer in the field.

Unités d'enregistrement autonomes en écologie aviaire : utilisations actuelles et futures
RÉSUMÉ. Les relevés acoustiques sont largement employés comme outil d'échantillonnage pour la recherche et les suivis écologiques.
Ils sont utilisés pour suivre les populations et les écosystèmes et étudier le comportement animal sous divers angles. Les unités
d'enregistrement autonomes (ARU, pour autonomus recording units) peuvent enregistrer les sons dans la plupart des environnements
et sont utilisés de plus en plus souvent par les chercheurs pour effectuer des relevés acoustiques d'oiseaux. Dans la présente revue, nous
résumons l'utilisation d'ARU en écologie aviaire et synthétisons les avantages et désavantages connus de cette technologie. Les ARU
permettent aux chercheurs de faire plus de visites répétées tout en passant moins de temps sur le terrain, avec l'avantage d'avoir un
enregistrement permanent des données récoltées et de réduire le biais associé à l'observateur. Ils sont utiles en milieu éloigné et dans
les cas où on cible des espèces rares. Les ARU sont comparables aux observateurs humains pour ce qui est de la richesse spécifique,
mais dans certains cas, ils détectent moins d'espèces et à des distances plus courtes. Les désavantages des ARU comprennent le coût de
l'équipement, la sauvegarde des enregistrements, la perte de données en cas de défaillance des unités, et le compromis possible à devoir
faire sur le plan de la couverture d'échantillonnage (spatiale ou temporelle). Les ARU génèrent une grande quantité d'enregistrements
sonores, mais les avancées quant à la reconnaissance automatisée des espèces et aux techniques de traitement acoustique contribuent
à réduire le temps de traitement. Les utilisations éventuelles d'ARU comprennent le suivi de la biodiversité, l'étude de l'utilisation de
l'habitat, les déplacements animaux et diverses questions en écologie comportementale fondées sur l'activité vocale. Les ARU ont le
potentiel de permettre des avancées importantes en écologie aviaire et pourraient être utilisées de façon plus novatrice qu'en tant que
simples substituts d'observateurs sur le terrain.

Key Words: acoustic surveys; biodiversity monitoring; noninvasive sampling; passive acoustic monitoring; point counts; vocal
communication

INTRODUCTION
Acoustic surveys are widely used to sample avian communities or
target species for ecological research, conservation, and
monitoring. Many bird species vocalize reliably, and thus,
acoustic surveys can be used to estimate abundance, density, or
occupancy (Dawson and Efford 2009, Marques et al. 2013,
Lambert and McDonald 2014, Sovern et al. 2014, Drake et al.
2016). Surveys repeated on an annual basis are useful for long-

term monitoring (e.g., Furnas and Callas 2015). Acoustic surveys
can employ playbacks by broadcasting vocalizations from a
speaker to provoke a response (e.g., for owl surveys: Hayward et
al. 1993, Laidig and Dobkin 1995), or they can be completely
passive, simply listening for vocalizing species. Avian point counts
are a commonly used type of passive acoustic survey whereby a
human observer identifies birds in the field from vocalizations
and potentially some visual detections (Rosenstock et al. 2002).
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Point counts have long been used to survey birds because many
species are easier to detect from vocalizations, and apart from an
experienced observer, they require no specialized equipment and
are easy to implement across a range of conditions. This situation
is changing, however. Relatively new technology is becoming
increasingly available to record sound in the field autonomously
using units programmed to turn on and record on a set schedule
unattended in the field. We refer to these as autonomous
recordings units (ARUs) and we encourage future studies to
maintain consistency and use this same terminology.  

Although the idea and ability to record animal vocalizations is
not new, the prevalence of autonomous recording technology has
increased in recent years in avian ecological research. We
conducted a literature search to document the rate of increase of
this technology in avian research. We conducted a search of peer-
reviewed literature in the Web of Science database in January 2017
using the following search terms: acoustic recording, autonomous
recording unit, autonomous recorder, autonomous recording,
automated digital recording system, bioacoustic monitoring, and
passive acoustic monitoring. We retained only primary research
articles on avian species that used recording units that could
function autonomously. We identified 61 articles in 32 peer-
reviewed journals from 2006 to 2017 (Table A1.1 in Appendix 1).
There was a noticeable increase in the number of articles
published using ARUs for avian research from 2014 to 2016 (Fig.
1), and we expect this trend to continue in 2017. ARUs are being
lauded as a useful tool for monitoring species that are elusive,
rare, or otherwise difficult to detect using point counts (Blumstein
et al. 2011, Holmes et al. 2015), although there are drawbacks. In
this review, we summarize the current use of ARUs in avian
ecological research and synthesize the current knowledge of the
benefits and drawbacks of using ARUs. We also discuss
techniques for processing and analyzing recordings and highlight
future research applications. ARUs have a lot of potential but are
underused in avian research. With our review, we aim to stimulate
future avian research to use ARUs in innovative ways.

Fig. 1. Number of original research articles that used
autonomous recording units for avian research that were
published in peer-reviewed journals over time. See Table A1.1 in
Appendix 1 for a list of all articles included in this figure.

ADVANTAGES AND DISADVANTAGES OF
AUTONOMOUS RECORDING UNITS IN THE
FIELD
A primary consideration for using ARUs for avian research and
monitoring is how their performance compares to surveys with
human observers in terms of species detections. We identified 21
studies in the peer-reviewed literature that compared field surveys
with human observers to recordings from either nonautonomous
or autonomous recording units and summarized the results (Table
1). The majority of the studies that we identified surveyed for
birds using traditional point counts in which a human observer
records all birds heard and seen at a fixed location within either
a specified or an unlimited radius. Other methods used to survey
birds included using a recording playback for a target species
(McGuire et al. 2011, Sidie-Slettedahl et al. 2015), walking a
survey route (Zwart et al. 2014), and a timed area search (Wimmer
et al. 2013). Five studies, including some of the earliest, used
portable nonautonomous recorders (Haselmayer and Quinn
2000, Hobson et al. 2002, Celis-Murillo et al. 2009, 2012,
Campbell and Francis 2011), whereas the remainder used ARUs
(Table 1). The majority of studies used species richness as the
metric for comparison, although other metrics for comparison
included species composition, abundance, presence or absence,
call counts, and detection probabilities (Table 1). Four studies had
unequal sampling effort between methods, with longer sampling
periods for ARUs (Acevedo and Villanueva-Rivera 2006,
McGuire et al. 2011, Wimmer et al. 2013, Holmes et al. 2014),
and two of these studies found that ARUs performed better than
human observers (Table 1). Of the remaining 17 studies that had
equal sampling effort, ARUs performed better than humans in 3
studies, equally in 8 studies, and less well than humans in 6 studies
(Table 1).  

Several studies that found better performance of humans than
ARUs acknowledged the advantages of ARUs over point counts
and reported that ARUs could be an effective method for certain
objectives or target species (Borker et al. 2015, Klingbeil and
Willig 2015, Sidie-Slettedahl et al. 2015, Leach et al. 2016). Several
studies also suggested that using both methods in combination
could be more effective than either method alone (Celis-Murillo
et al. 2009, 2012, Tegeler et al. 2012, Digby et al. 2013, Holmes
et al. 2014, Alquezar and Machado 2015, Van Wilgenburg et al.
2017). Only one study in which humans performed better than
ARUs reported that ARUs were not cost effective compared to
point counts, but acknowledged the utility of a permanent record
and recommended the use of portable recorders when conducting
point counts (Hutto and Stutzman 2009). In several cases in which
ARUs detected fewer species or fewer individual birds than
humans, this was attributed to humans being able to detect birds
at greater distances (Hutto and Stutzman 2009, Venier et al. 2012,
Sedláček et al. 2015, Sidie-Slettedahl et al. 2015). Two papers in
this special issue demonstrate methods to correct for differential
detectability of birds between ARUs and human point counts
using paired sampling (Van Wilgenburg et al. 2017) and playback
experiments (Yip et al. 2017b). Some studies attributed fewer
species detections by ARUs to visual detections of birds in the
field (Hutto and Stutzman 2009, Klingbeil and Willig 2015, Leach
et al. 2016); however, in other studies, humans detected few species
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Table 1. Summary of studies that evaluated the performance of autonomous and nonautonomous acoustic recorders compared to
traditional avian point counts by a human observer in the field. Studies were considered to have equal effort between the two methods
if  each method sampled for the same cumulative amount of time.
 
Study Recorder type Effort Metric Performance

Acevedo and Villanueva-Rivera (2006) Autonomous Unequal Species richness Recorder better
Alquezar and Machado (2015) Autonomous Equal Species richness, species

composition
Equal

Borker et al. (2015) Autonomous Equal Single-species call counts Humans better
Campbell and Francis (2011) Nonautonomous Equal Species richness Equal
Celis-Murillo et al. (2009) Nonautonomous Equal Species abundance, species

richness, species composition,
detection probability

Recorder better†

Celis-Murillo et al. (2012) Nonautonomous Equal Species richness, species
composition, detection probability

Equal

Digby et al. (2013) Autonomous Equal Single-species call counts Equal‡

Haselmayer and Quinn (2000) Nonautonomous Equal Species richness Equal
Hobson et al. (2002) Nonautonomous Equal Species richness, species

abundance, species composition
Equal§

Holmes et al. (2014) Autonomous Unequal Presence or absence of three target
species

Equal|

Hutto and Stutzman (2009) Autonomous Equal Species richness Humans better
Klingbeil and Willig (2015) Autonomous Equal Species richness, species

composition
Humans better

Leach et al. (2016) Autonomous Equal Species richness, species
composition

Humans better

McGuire et al. (2011) Autonomous Unequal Presence or absence of a target
species

Equal

Sedlácek et al. 2015 Autonomous Equal Species richness, species
abundance, species composition

Equal¶

Sidie-Slettedahl et al. (2015) Autonomous Equal Abundance of three target species,
detection probability

Humans better

Tegeler et al. (2012) Autonomous Equal Species richness Equal
Van Wilgenburg et al. (2017) Autonomous Equal Detection probability Equal#
Venier et al. (2012) Autonomous Equal Species richness, species abundance Humans better††

Wimmer et al. (2013) Autonomous Unequal Species richness Recorder better
Zwart et al. (2014) Autonomous Equal Presence or absence of a target

species
Recorder better

†Similar numbers of species were detected for both methods, but there were differences in species composition between methods. The probability of detecting
birds was higher when listening to recordings, and the data from recordings yielded more reliable estimates of detection probability and abundance than
human point count data.
‡Human observers detected more calls, but both methods produced the same results for the most important conservation information from the survey: the
annual change in calling activity of Little Spotted Kiwi (Apteryx owenii).
§Human observers detected a few more species, but the species composition was very similar and species abundance estimates did not differ between methods.
|Using an automated recognition approach to detect target species on recordings worked as well as point counts with human observers for Acadian
Flycatcher (Empidonax virescens) and Cerulean Warbler (Setophaga cerulea), but point counts outperformed recordings for Prothonotary Warbler
(Protonotaria citrea).
¶Species richness was not significantly different between methods, and species composition was similar. Although there was a strong correlation between
species abundance for the two methods, the recorders underestimated abundance for several bird species.
#Most species did not show a bias in detection probability between the methods, and raw counts were relatively comparable between methods, although a
few species did show substantial bias.
††Humans performed better compared to an autonomous recording unit (Song Meter SM1; Wildlife Acoustics, Maynard, Massachusetts, USA), and this
comparison was the primary objective of the study. However, a nonautonomous recorder (E3A; River Forks Research, Hope, British Columbia, Canada)
also included in the study performed similarly to humans.

by visual cues only during point counts (Tegeler et al. 2012,
Alquezar and Machado 2015). ARUs may not always be able to
“hear” as far as humans can, but this will depend on the sensitivity
of the ARU model and microphones (Rempel et al. 2013, Turgeon
et al. 2017). Differences in the numbers of species detected could
also be because of how recordings are processed in the lab, for
example, the quality of headphones used when listening
(Campbell and Francis 2011), the volume at which the recordings
are played back, or variability among observers processing the
recordings (Rempel et al. 2005). We argue that the evidence to
date indicates that ARUs are generally comparable to avian point

counts with human observers, offer a number of advantages over
human observers in the field, and can be effective for surveying
birds.  

Acoustic recordings provide a permanent record, and this
advantage was recognized by researchers before recording
equipment became autonomous. Recordings can be reviewed by
multiple observers, reducing observer bias and enabling
researchers to assess detection probability and analyze factors
that could affect detection (Campbell and Francis 2011).
Recordings are preferable when species richness is high (Hobson
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et al. 2002, Campbell and Francis 2011), particularly during the
dawn chorus (Haselmayer and Quinn 2000), because of the ability
to listen multiple times. A downside to this is the increased amount
of time spent listening to recordings. However, a permanent
record can be important for verifying species identification of
uncommon or rare species (Jones et al. 2007, Swiston and Mennill
2009). In addition, a permanent record enables comparisons of
contemporary to historical vocalizations. For example, using
archived audio recordings, Luther and Derryberry (2012) found
that the songs of White-Crowned Sparrow (Zonotrichia
leucophrys) increased in minimum frequency over a 37-year period
in San Francisco, USA, concurrent with rising levels of traffic
noise. A disadvantage of audio recordings is that storage
requirements for recordings can rapidly become overwhelming
and require considerable planning and expense to maintain.
Nevertheless, permanent audio records are likely to be an
important data source for tracking changes in species
distributions and animal vocalizations over time, including
documenting biodiversity changes in areas with increasing
anthropogenic disturbance.  

Fully autonomous recording units have some distinct advantages
in the field over avian point counts and nonautonomous recording
equipment. ARUs can be set up or taken down in a matter of
minutes and, although they require a minimum of two visits by
field personnel, they require less field time in total compared with
point counts in some cases (e.g., Holmes et al. 2014). ARUs can
be programmed to record for a similar duration as point counts
(e.g., 3–10 min), but can make several recordings per day and
multiple surveys can be done over several days or months (e.g.,
Goyette et al. 2011, Tegeler et al. 2012). The increased temporal
effort makes ARUs a useful tool for studying rare or elusive species
that vocalize infrequently (Rognan et al. 2012, Holmes et al. 2014,
2015, Zwart et al. 2014, Cerqueira and Aide 2016). A downside
is that if  an ARU fails to record, the loss of data could go
unnoticed for a long time, making it imperative to check units
before deployment. Another disadvantage of ARUs is that there
can be a trade-off  between temporal coverage and spatial
coverage. Initial purchase costs of ARUs are high, and there are
ongoing maintenance costs for replacing batteries and damaged
microphones. Achieving similar spatial coverage as point counts
would require either a large number of ARUs (a considerable cost)
or moving them to new locations often.  

ARUs can be deployed at a time that is convenient and can be
programmed to record at a suitable time for target species. This
flexibility could be advantageous for surveying returning
migratory birds, some of which have begun migrating earlier
because of climate change (Cotton 2003), because ARUs can be
deployed before the birds arrive. This flexibility also makes ARUs
an attractive option for surveying remote locations and
conducting nocturnal surveys (e.g., Goyette et al. 2011, Digby et
al. 2013, Sidie-Slettedahl et al. 2015). A pilot project by
Environment and Climate Change Canada used ARUs to survey
northern boreal bird species near the northern limit of their
breeding range in the Northwest Territories, a region largely
inaccessible because of few all-season roads. By taking advantage
of winter roads to communities and diamond mines, they
deployed ARUs in the winter, programmed them to turn on and
record migratory birds in the spring, and retrieved the data in the
following winter when the roads were open again (S. Haché,

personal communication). ARUs will likely prove useful in other
cases where accessibility for conducting surveys is a limiting
factor.  

Observers conducting point counts may introduce bias to the data
collected if  their presence affects a bird’s behavior or if  the
observer cannot reliably detect all species. An observer’s ability
to detect vocalizations can vary with experience, but with ARUs,
less experienced observers with access to reference recordings can
obtain similar accuracy to more experienced personnel while
listening to audio recordings in the lab (Goyette et al. 2011).
Acoustic detections from both point counts and ARU-based
surveys are subject to the observer’s hearing ability, but with
ARUs it is possible to reduce this bias to some extent by being
able to adjust the volume and having multiple observers listen to
recordings. A disadvantage is that multiple-observer modeling
approaches may overestimate the number of species because of
identification errors (Campbell and Francis 2011). Observers
conducting point counts in the field may disturb and influence
the behavior of birds. Birds may flush upon the arrival of an
observer, and the approach distance can be influenced by clothing
color of the observer for some species (Gutzwiller and Marcum
1997). Another study in a different bird community, however,
found no effect of observer presence on bird behavior (Campbell
and Francis 2012). Field personnel setting up an ARU may
influence the behavior of birds while they are present, but this
disturbance is temporary, and the recordings will occur without
the observer present, so it is less likely that timid or shy birds are
negatively affected.

TECHNIQUES FOR PROCESSING RECORDINGS
ARUs can reduce field time but significantly increase processing
time in the lab by generating large data sets that can present
challenges. Listening to recordings is a common processing
approach and is probably still the best option for studies of avian
community composition. Several factors can influence species
detection during listening such as headphone quality, multiple
listeners, and repeated listening to a recording. Projects should
establish a standardized listening protocol before processing
acoustic data to minimize potential bias from these factors.
Spectrograms are frequently used during listening to enhance
species detection and identification. For studies targeting one or
a few species of interest, manual scanning of spectrograms
without listening can be an efficient processing method if  the
vocalizations are visually distinctive and recognizable (Swiston
and Mennill 2009). Software for generating spectrograms and
sound editing is readily available as freeware (e.g., Audacity) or
commercial software (e.g., Adobe Audition). In addition, Obrist
et al. (2010) identify a number of programs dedicated to
bioacoustic use, some of which are equipped with tools for sound
analysis and automated species recognition to facilitate
processing recordings.  

Recent advances in automated species recognition is likely to
increase the efficiency of processing large volumes of acoustic
recordings for avian research and monitoring. In general, the
process involves matching recording segments to a template (often
termed a “recognizer”) derived from training data and registering
a hit when a similarity threshold is reached. A few different
approaches have been developed, including band-limited energy
detectors (Mills 2000), binary point matching (Katz et al. 2016),
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decision trees (Acevedo et al. 2009, Digby et al. 2013), random
forests (Ross and Allen 2014), spectrogram cross-correlation
(Katz et al. 2016), hidden Markov models (Wildlife Acoustics
2011), and, most recently, deep learning through convolutional
neural networks (Salamon and Bello 2017). Only a few of these
approaches are incorporated into commercial or open-source
software, including Song Scope (Wildlife Acoustics, Maynard,
Massachusetts, USA), Raven Pro (Cornell Laboratory of
Ornithology, Ithaca, New York, USA), and R package
“monitoR” (Hafner and Katz 2017), making them more easily
accessible to avian researchers. It is important to note that species
recognition is rarely completely automated for any of these
approaches or programs; it is usually necessary to have human
observers check automated output results to filter out false
positives (Buxton and Jones 2012, Zwart et al. 2014, Colbert et
al. 2015, Sidie-Slettedahl et al. 2015). False negatives are also a
concern with recognizers, and their detection usually involves
listening or manual scanning of recordings to identify
vocalizations that the computer missed (Buxton and Jones 2012,
Zwart et al. 2014, Holmes et al. 2015). Nevertheless, a recognizer
can be useful in detecting rare or elusive species and can make
data processing more efficient and manageable.  

Processing recordings using a recognizer can be effective and
efficient, but it is not always a straightforward process. There are
examples in the literature of successful (Buxton and Jones 2012,
Taff et al. 2014, Zwart et al. 2014, Holmes et al. 2015) and less
successful attempts (Colbert et al. 2015, Sidie-Slettedahl et al.
2015) to build recognizers to identify species calls on recordings.
One issue is that abiotic noise on the recordings, e.g., from heavy
wind or rain, can cause high numbers of false positives (Buxton
and Jones 2012, Zwart et al. 2014) and can also increase the rate
of false negatives (Buxton and Jones 2012, Willacy et al. 2015).
Another issue is that overlapping calls from other species on
recordings can result in failure to detect the target species calls
(Buxton and Jones 2012). Ultimately, the effectiveness of a
recognizer will depend on the research question. If  the goal is to
determine if  a species is present, then a recognizer is useful as long
as it reliably detects a species when it is present. To study calling
behavior, a large majority of the vocalizations on recordings need
to be detected. One of the problems with comparing performance
of recognizers is that there are no established standard assessment
metrics or detection thresholds, and thus, there are few
comparisons of performance across approaches or software
programs (but see Acevedo et al. 2009). The need for a common
framework in the development and assessment of recognizers for
automated species recognition has been identified (Blumstein et
al. 2011), and some progress has been made toward this goal
(Potamitis et al. 2014), but more collaborative work is still needed
in this area.  

Automated species recognition is not the only recent advance in
tools for processing acoustic recordings. There are now several
packages available in R (R Core Team 2016) that can import
sound files and offer various sound analysis functions. The R
package “seewave,” for example, has functions for time,
amplitude, and frequency analyses, as well as generating sounds
for playback experiments (Sueur et al. 2008). The “soundecology”
package has functions to implement acoustic indices to
characterize animal acoustic communities and soundscapes from
the physical attributes of sound on recordings (Villanueva-Rivera

and Pijanowski 2016). In addition to automated species
recognition, the “monitoR” package has functions to rename
recordings and isolate shorter segments in long recordings, which
can be useful if  using an ARU with limited scheduling capabilities
(Katz et al. 2016). The recently developed “warbleR” package
builds upon “seewave” and “monitoR” functions to streamline
analyses of acoustic signal structure by measuring signal
parameters (frequency, time, and amplitude) and pairwise
acoustic dissimilarity and performing pairwise spectrogram
cross-correlations (Araya-Salas and Smith-Vidaurre 2017).
Another type of advance in bioacoustic processing is the
development of an automated monitoring network that combines
hardware and software to record sound in the field and send the
recordings to a data server in real time for processing, and it
includes tools for data management and automated species
recognition (Aide et al. 2013). Advances in bioacoustic processing
will no doubt continue to improve the efficiency of processing
large volumes of acoustic recordings.

STATISTICAL APPROACHES TO ANALYZING
AUTONOMOUS RECORDING UNIT DATA
Statistical analysis of acoustic data collected with ARUs presents
a number of possibilities and challenges. Estimating species
density or abundance per unit area is important for conservation
research, monitoring programs, and wildlife management
planning. ARUs are basically unlimited distance point counts,
making it problematic to estimate density because the detection
radius and consequently the area surveyed can change across
species, habitats, and ARU models (Yip et al. 2017a,b). One
approach is to estimate a detection radius for each species by
broadcasting calls at varying distances from the ARU and
calculating a radius based on what observers can hear from a set
of sounds known to have occurred at set distances (Yip et al.
2017a). Another similar approach is to use theoretical sound
transmission and playback trials to determine a threshold volume
of the calls within a certain radius. Lambert and McDonald
(2014) determined that Australian Bell Miner (Manorina
melanophrys) within a 50-m radius of the ARU would be louder
than 70 dB and were able to calculate density within this radius.
A problem with these approaches is that the output volume of
bird vocalizations has rarely been measured, making it difficult
to determine an appropriate volume for the playback. An
inappropriate playback volume could either underestimate or
overestimate the detection radius, and there remains considerably
more work to do in this area.  

Distance sampling has been lauded as a useful tool to estimate
density from point counts (Rosenstock et al. 2002). Distance
sampling estimates the rate of missed detections based on the
distance between observers and detected animals by fitting a
detection function that corrects for individuals missed during a
species count (Buckland et al. 2001). If  it were possible to estimate
reliably the distance of species heard on ARU recordings (e.g.,
using amplitude or a measure of signal strength), distance
sampling to estimate density could be feasible, but more work is
still needed in this area. A more promising approach is to use
arrays of passive detectors and spatially explicit capture-recapture
methods to estimate density from locations of individuals (Efford
et al. 2009). This approach has been extended to estimate bird
densities from an array of acoustic recorders and was found to
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be more precise than mist-netting (Dawson and Efford 2009). The
key with this approach is that individuals must be able to be
identified from vocalizations, although individuals do not need
to be localized; the models estimate call density from the spatial
pattern of detections (Efford et al. 2009). This approach holds
promise for estimating bird densities using ARUs. However,
implementation of this approach will require considerable
investment in equipment and time spent in analyzing acoustic
data.  

Estimating occupancy from acoustic surveys may be a more
feasible alternative to estimating density. Occupancy modeling
uses repeat observations at sites to estimate detectability and
account for imperfect detection when estimating the probability
of a species occupying a site or patch (Mackenzie et al. 2002).
Acoustic data collected with ARUs are well suited for this
approach because of the ease of increasing the number of
observations, or visits, with no additional field time required.
Increasing the number of visits and sampling sites improves the
accuracy and precision of occupancy estimates (Mackenzie et al.
2002). Automated species recognition from ARUs can be an
efficient method to obtain data from acoustic recordings for
occupancy modeling (Cerqueira and Aide 2016). An issue with
estimating occupancy is that interpreting the biological meaning
of the results requires some knowledge of species movement and
home range size. For example, if  a species’ movement rate is fairly
low and it has a small home range size, then a single ARU is
appropriate to determine occupancy of that species because it is
unlikely to move in and out of the area surveyed and thus meets
the assumption of closure. Violations of the assumption of
closure can lead to overestimates of the probability of occupancy
(Rota et al. 2009). For species with larger home ranges than the
area surveyed by a single ARU, an occupancy modelling approach
may still be used, but must be interpreted as the probability of
the species using an area during the sampling season as opposed
to occupancy. Assessing occupancy in such a context and using
it to provide an index of abundance may require multiple ARUs
to define a sampling unit.  

The occupancy modeling approach is quite flexible and has been
adapted to deal with a variety of different sampling scenarios.
The original model estimates occupancy of a single species during
a single season (Mackenzie et al. 2002). Multiseason or dynamic
models estimate colonization and local extinction of sites or
patches by a single species over multiple seasons (Mackenzie et
al. 2003). Co-occurrence models account for interactions between
species on occupancy and detection (Mackenzie et al. 2004) and
have been used to investigate competitive exclusion between
Northern Spotted Owl (Strix occidentalis caurina) and Barred
Owl (Strix varia) in Oregon (Bailey et al. 2009). It is possible to
allow for both false negative and false positive error rates when
modeling site occupancy (Royle and Link 2006). Occupancy
models developed to use data from multiple detection methods
could prove useful for surveys that use human observers and
ARUs in combination to be able to make inferences about
method-specific detection probabilities (Nichols et al. 2008).
There are also Bayesian approaches to occupancy modeling
(Royle and Kéry 2007, Kéry and Royle 2008). Many of the
occupancy models mentioned can be implemented using the R
package “unmarked” (Fiske and Chandler 2011) and are an

important statistical tool for analyzing and interpreting acoustic
data collected with ARUs.  

A future challenge of analyzing acoustic data from ARUs is
integrating data that were collected differently and over different
lengths of time. This will be a challenge for biodiversity
monitoring programs that may change recording technology as
new models of ARUs become available. A practical solution is
for monitoring programs to have a period of overlap between
older and newer ARU models to be able to make direct
comparisons between units (Rempel et al. 2013). Recording
schedules within a monitoring program may also change from
year to year as methods become more refined or as different
species become important targets for conservation. One of the
main challenges with analyzing ARU data is determining the unit
of replication, and this can be particularly problematic if  the
sampling effort at a point is inconsistent between years. In
addition to changes in sampling effort (i.e., recording schedule),
the microphones can degrade and lose sensitivity with field use
(Turgeon et al. 2017), and the settings used for the audio
recordings can differ, all of which can affect the number of species
that are detected. Occupancy modeling can provide some
solutions to these issues because differences in detection
probability between methods can be estimated (e.g., different
models of ARUs) and the models can handle missing data if  some
visits are missed, which may occur if  the ARU fails to record at
a particular point in time. Nevertheless, research and monitoring
programs using ARUs will need to consider these issues and
should have a system of quality control to ensure that
microphones and ARUs are meeting a set standard each time they
are deployed.

CURRENT AND FUTURE APPLICATIONS
ARUs have the potential to be used in innovative ways in avian
ecological research beyond simply being a substitute for a human
observer. We highlight some examples of applications of ARUs
that fall into three general research categories: biological
monitoring, animal movement, and communication behavior.
ARUs can be an effective method for tracking presence or absence
of multiple taxa for monitoring and conservation. ARUs can
monitor the success of conservation programs (e.g., activity at
seabird colonies after invasive predator eradication; Buxton and
Jones 2012). Monitoring can continue uninterrupted as long as
ARUs are serviced and batteries and data storage are replenished.
ARUs can be deployed at the same location for several weeks to
record at the optimal time for multiple taxa. ARUs deployed in
temperate regions, for example, can detect owls calling in early
spring, followed by amphibians and songbirds as the season
progresses. The timing of biological surveys for monitoring is
important to determine whether a species is present with some
certainty, and the ability of ARUs to record over an extended
period can facilitate getting the timing right.  

Bioacoustic monitoring may extend beyond species counts to
acoustic habitat mapping and soundscape monitoring in the
future. Dumyahn and Pijanowski (2011) argue that soundscapes
have value worthy of conservation. Data processing methods have
recently been established to characterize sounds from different
sources (e.g., biotic, abiotic, and anthropogenic) for acoustic
habitat monitoring to detect changes in soundscapes (Merchant
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et al. 2015). In addition, various acoustic indices have recently
been developed to characterize animal acoustic communities and
soundscapes from the physical attributes of sound (Sueur et al.
2014). The acoustic complexity index (Pieretti et al. 2011), for
example, was tested to detect shifts in songbird phenology and
was an effective, though coarse metric to detect the arrival of
migrating songbirds (Buxton et al. 2016). Although these acoustic
indices do not provide information about which species are
present, studies have suggested that some indices may be useful
in estimating diversity (Depraetere et al. 2012), calling activity
(Farina et al. 2011, Buxton et al. 2016), and directing the selection
of recordings to process (Towsey et al. 2014). More rigorous
testing and research on acoustic indices and their interpretation
is needed, and avian studies can benefit and make important
contributions to this research (Gasc et al. 2017). Newly developed
tools in bioacoustics such as acoustic habitat mapping and
acoustic indices may prove useful for bioacoustic monitoring as
well as habitat and biodiversity assessments.  

Recording animal vocalizations using ARUs is a noninvasive
method to collect data on animal movement patterns and habitat
use on both large and small scales. At a large scale, ARUs can be
used to study migration pathways and time of arrival of migratory
birds (Farnsworth and Russell 2007, Sanders and Mennill 2014,
Buxton et al. 2016). At a small scale, time-synced ARUs arranged
in an array can allow for localization of individuals within their
home range using the time difference of arrival of acoustic signals
(Mennill et al. 2006, 2012, Campbell and Francis 2012, Frommolt
and Tauchert 2014). In addition to studying habitat use,
localization can be used to estimate density (Lambert and
McDonald 2014) using standard distance sampling methods
(Buckland et al. 2001) and to study behavioral patterns associated
with vocalizations (e.g., function of songbird duets; Mennill and
Vehrencamp 2008). For some species, it is possible to identify
individuals using song discrimination techniques (Ehnes and
Foote 2015, Petrusková et al. 2016), which could be useful for
estimating return rates between breeding seasons and for
behavioral studies tracking individuals throughout the breeding
season. Localization can be used on any vocalizing species
regardless of its size (unlike VHF tags) without capturing and
handling it. A disadvantage of localization is that it increases data
processing time substantially. Even with recently developed
software (Wilson et al. 2014), this method is still very time
consuming because each sound needs to be processed manually
to calculate the time difference of arrival. Localization will only
be effective for species that vocalize regularly and for species with
individually unique vocal characteristics that persist over time
(Mennill 2011), but it can provide movement data for species that
may be difficult to capture or too small for any other type of
tracking technology.  

ARUs have the ability to collect detailed data on vocalizing
behavior. Data on daily or seasonal vocalization patterns (e.g.,
Goyette et al. 2011, Sosa-López and Mennill 2014) can enable
researchers to study communication and the effects of
neighborhood social context on vocal behavior (e.g., Taff et al.
2014). New ARUs that can be attached to an animal (referred to
as on-animal devices or acoustic tags) can address different
behavioral ecology questions than ARUs deployed in the
environment. Acoustic tags have primarily been used in studies
of marine mammals (Mellinger et al. 2007, Johnson et al. 2009)

but were recently attached to Common Nighthawk (Chordeiles
minor) in a study in northern Alberta, Canada (E. Knight,
personal communication). Acoustic tags have the benefit that they
can record both intentional and unintentional vocalizations.
Feeding noise is an example of an unintentional vocalization and
has been used to quantify daily time budgeting of mule deer
(Odocoileus hemionus; Lynch et al. 2013). Acoustic tags could
prove useful for a wider variety of avian studies assuming the size
of the technology decreases in coming years. Recording animal
vocalizations from an ARU in the environment or attached to an
animal provides an opportunity to address questions about
vocalization characteristics, calling behavior, foraging, movement,
and effects of sound in the environment (including from
anthropogenic sources) on animal behavior.

CONCLUSION
ARUs have a number of benefits for avian ecological research,
including the ease of repeat sampling across spatial and temporal
scales, reduced observer bias, reduced field time, and a permanent
record of the survey. ARUs have comparable species detection
rates to avian point counts using human observers, although there
are some cases with lower detection rates for ARUs.
Understanding the sampling distance of ARUs and how this
varies relative to that for humans, other ARU types, and in
different environments is a crucial area of research that is required
to maximize the benefits of ARUs. Other drawbacks to be aware
of include difficulty processing large amounts of data, storage
capacity for the audio files, differences in recording schedules and
settings between years, and potential recording problems as
equipment ages. The drawbacks are not necessarily an issue if  the
equipment is properly maintained, the ecological question is
appropriate for the use of ARUs, and careful thought goes into
the study design. Much of the avian research using ARUs to date
has focused on comparing species detection data from ARUs to
that from human observers. Although this is an important test
for any new technology before using it more extensively, the results
have demonstrated that ARUs are comparable. ARUs have the
potential to be used in more innovative ways than simply as a
substitute for a human observer in the field, and we are excited
to see how this new technology will provide fundamental insights
into the ecology of vocalizing birds.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/974
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Appendix 1. Summary of peer-reviewed primary research articles that used autonomous recording 

units for avian research. 

 

Table A1.1. Primary research articles published in peer-reviewed journals included in Figure 1 that 

used autonomous recording units (ARUs) for avian research, sorted by year published. To locate 

articles we searched the Web of Science database in January 2017 using the following search terms: 

acoustic recording, autonomous recording unit, autonomous recorder, autonomous recording, 

automated digital recording system, bioacoustic monitoring, and passive acoustic monitoring. Only 

articles on avian species that used recording units that could function autonomously were retained. 
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