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1 Introduction

In Alberta it is estimated that about 20% of the province (66,000 km?) is covered by wetlands of which
90% are in the boreal forest (Alberta Environment and Sustainable Resource Development, 2013). Much
of the native wetland areas in Alberta have already been drained or permanently modified and other areas
are currently undergoing rapid changes due to resource exploration and extraction (Ducks Unlimited,
2017). For this reason it is increasingly important to have spatially extensive maps of wetland type and
extent.

Currently, the best source for wetland inventory in Alberta is the Alberta Merged Wetland Inventory
(AMWI) (Alberta Environment and Parks, 2012). This represents an amalgamated data source from 33
different data sources with varying methodologies. Other products such as Alberta Vegetation Inventory
Enhanced (AVIE) (Alberta Environment and Parks, formerly ESRD, 2016), Primary Land and Vegetation
Inventory (PLVI) (Alberta Environment and Parks, formerly ESRD, 2012), and Derived Ecosite Phase (DEP)
(Alberta Agriculture and Forestry, 2017) provide quality information on wetland extent and type but do not
provide Alberta-wide spatial coverage. The lack of spatially consistent and extensive wetland maps
becomes a problem for various monitoring, and policy frameworks across Alberta such as the
Biodiversity Management Framework (BMF). In the Lower Athabasca BMF Aquatic Habitat and Fen
Cover are two indicators requiring wetland data. The varying sources of AMWI and incomplete spatial
coverage of AVIE, PLVI and DEP could result in spatially inconsistent results. Examples like these
demonstrate the need for a consistent spatially extensive dataset for wetland and wetland types.

Satellite imagery and other remotely sensed data offers means to generate a spatially extensive and
consistent dataset. Within the boreal, AMWI used a either just optical imagery or a mix of optical remote
sensing, and Synthetic Aperture Radar (SAR) data (Ducks Unlimited Canada, 2011) along with ancillary
data such as a digital elevation model (DEM), forest inventories, and fire information for their wetland
mapping. Recent literature suggests that a combined approach of optical, SAR, and high resolution
DEMs may be the most effective for wetland mapping (Touzi et al., 2011; Brisco, 2015; Difebo et al., 2015;
Hird et al.,, 2017). At this time, the best freely accessible source for this may be Sentinel-1 and-2 data
(Copernicus [2014, 2015, 2016]), which offers decent spatial and temporal resolutions (10-m resolution,
and 5 - 6 day revisit time) for mapping wetlands on regional to provincial scales. Combining these
datasets with a fine resolution DEM should provide good information for classifying wetlands with remote
sensing data.

To summarize, there are two goals for this project:
1. To develop a framework in which wetland occurrence can be predicted across large areas, at
regular intervals, with easily accessible/open source input data and software.
2. To generate the most up-to-date and accurate data set of wetland occurrence for the entire
boreal region.

2 Methods
2.1 Study area

The study area primarily consists of the Boreal Natural Region of Alberta with small parts of the foothills,
parkland, and Canadian Shield included. This study area makes up about 60% (397, 958 km?) of the total
area of Alberta.
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Figure 1: The spatial delineation of the boreal
region.

2.2 Data

Sentinel-1, -2 (Copernicus [2016, 2017]), LiDAR Digital Terrain Model (DTM) (Government of Alberta,
2006), and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) (USGS, 2006) data
was used to generate wetland probability in the boreal region. All Sentinel and SRTM data were acquired,
processed, and downloaded through Google Earth Engine (GEE) (Google Earth Engine Team, 2015). GEE
stores Sentinel-1 (SAR imagery) ground range detected scenes which have been pre-processed with the
Sentinel-1 Toolbox (Sentinel Application Platform — Sentinel-1 Toolbox). These pre-processing steps
include thermal noise removal, radiometric calibration, and terrain correction (Google Earth Engine Team,
2015). Dual polarization (VV VH) Sentinel-1 (S1) images were further processed in the GEE environment
by performing an incidence angle correction (Gauthier et al.,, 1998) and smoothing with a 3x3 Sigma Lee
filter (Lee et al., 2009) (credit to Guido Lemoine for GEE code). Once all ST images were processed, a
normalized difference of polarization (NDPOL) was calculated (see Table 1) and added to the available
bands. To generate a single composite image for the S1 variables the per pixel mean of the VH and
NDPOL bands were calculated. A total of 478 S1 images were used in the calculation of the VH and
NDPOL variables.

Sentinel-2 (optical imagery) top of atmosphere data was acquired through GEE. Clouds, shadows, snow,
and ice were removed with the QA60 band (a quality control band used to identify bad pixels) and further
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cloud masking was done using bands 1 (aerosols) and 11 (cloud). Sentinel-2 (S2) images intersecting
with the boreal region during 2016-2017 leaf-on season (May 15 — August 31) were used to generate
vegetation indices, and Principal component 1 and 2. PC1/2 metrics were generated with the 10m S2
bands (B2, B3, B4, and B8) in a principal component analysis. The merged S2 data was generated using a
median composting algorithm where the median time series value for each pixel was selected as the
most representative pixel. A total of 3,148 S2 images were used in the calculation of the vegetation
indices and PC bands.

The DEM/DTM data used for modelling came from three sources: Tm bare earth (BE) LiDAR for the forest
regions of Alberta(Government of Alberta, 2006), 15m bare earth (BE) LiDAR from the prairie regions of
Alberta(Government of Alberta, 2017), and 30m SRTM DEM data for anywhere without LiDAR (USGSm
2006). The Tm BE LiDAR was mean aggregated to 10m to match the S1 and S2 data and the 15m BE
LiDAR was resampled to 10m using cubic convolution method. The SRTM data was turned into a floating
point raster, then resampled to 10m resolution using cubic convolution and then subsequently smoothed
using a 7x7 pixel mean filter. Two topographic indices (TWI and TPI, Table 1) were calculated separately
for each DEM data set and then merged when complete. All topographic indices were calculated in SAGA
version 5.0.0 (Conrad et al., 2015). All the input variables can be seen in Figure 2 and the equations and
description can be seen in Table 1.

Training data was taken from the Alberta Biodiversity Monitoring Institute 3x7km Land Cover Photoplots
(hereafter 3x7s) (ABMI, 2016). These photoplots are derived from high resolution 3D image interpretation
and give detailed attribution of land cover information. They are typically very accurate with less than 1%
of features possessing errors (ABMI, 2016).

Table 1: List of possible input variables used in the wetland probability model

Variable Datasource Equation Description
ARI Sentinel-2 Band 8 Band 8 Anthocyanin Reflectance Index. An index
<Band 2) B (Band 3) sensitive to anthocyanin pigments in
plant foliage (Gitelson et al., 2001).
NDVI Sentinel-2 (Band 8 — Band 4) Normalized Difference Vegetation Index.
(Band 8 + Band 4) Index for estimating photosynthetic
activity, and leaf area (Rouse et al., 1973).
NDWI Sentinel-2 (Band 3 — Band 8) Normalized difference Water Index from
(Band 3 + Band 8) Mcfeeters (1996)
NDPOL  Sentinel-1 (VH — VV) Normalized Difference of Polarization.
(VH + VV)
PC1 Sentinel-2 - The first principal component of variation
of Bands 2, 3, 4, and 8 of Sentinel-2 data
PC2 Sentinel-2 - The second principal component of

variation of Bands 2, 3, 4, and 8 of
Sentinel-2 data

PSRI Sentinel-2 (Band 4 — Band 2) Plant Senescence Reflectance Index. A
(Band 5) ratio used to estimate the ratio of bulk
carotenoids to chlorophyll (Hatfield and
Prueger, 2010).

REIP Sentinel-2 (Band 4 + Band 7) — Bands Red Edge Inflection Point. An
702 + 40 2 approximation on a hyperspectral index
(Band 6 — Band 5) for estimating the position (in nm) of the

NIR/red inflection point in vegetation
spectra (Herrmann, et al,, 2011).
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Topographic Position Index (TPI)
generated in SAGA (Conrad et al., 2015).
An index describing the relative position
of a pixel within a valley, ridge top
continuum calculated in a given window
size. TPl was calculated with a 500m
moving window for this purpose (Weiss,
2001).

TWI

LiDAR,
SRTM DEMs

Saga Wetness Index. A SAGA (Conrad et
al., 2015) version of the Topographic
Wetness Index. Potential wetness of the
ground based on topography (Béhner et
al., 2002).

VH

Sentinel-1

Vertical polarization sending horizontal
polarization receiving SAR backscatter in
decibels.
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Figure 2: The 11 potential input raster inputs for the wetland probability model. NDPOL and VH are generated from
Sentinel-1, TPl and TWI are generated from DEM data, and the rest are generated from Sentinel-2 data.

2.3 Data exploration and variable selection

Figure 3 shows the distribution of values for all possible input variables divided by wetland and upland
class. The wetland and upland training data comes from 3x7s. Many variables show a distinct difference
between wetlands and uplands (ARI, NDVI, PC2, REIP, TWI, and VH). Some variables show similar values
between classes but demonstrate different distributions around the same mean (NDPOL, NDWI, PC1, and

TPI).
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Figure 3: Distribution all possible input variables divided by upland or wetland class.

Using information from Figure 3, Table 2, and Table 3 we selected the most important variables for

predictive modelling of wetlands. TWI, ARI, and REIP all have good separation between wetland/upland
classes, high correlation to a binary wetland/upland layer, and high relative importance in a predictive
model. TPl and NDPOL are chosen due to their low correlation to TWI, ARI, and REIP, and since they show

moderate importance in the predictive model. The final chosen variable is NDWI due to moderate

correlation with wetlands, and lower correlation with all other variables. The highest cross correlation
between the six chosen variables is (-0.61) between ARI and REIP which was deemed acceptable. The
chosen variables for predictive modelling are highlighted in green in Table 3. These six variables provide
a good mix of data sources (three from S2, two from DEMs, and one from S1).

Table 2: Cross correlation between the 11 possible input variables and a binary wetland/upland grid.

ARI NDPOL NDVI NDWI PC1 PC2 PSRI REIP TPI TWI VH wetland
ARI 1.00 -0.11 -0.43 0.35 0.02 -0.68 0.74 -0.61 -0.07 0.33 -0.48 0.44
NDPOL -0.11 1.00 0.18 -0.15 -0.04 0.24 -0.13 -0.03 -0.05 0.06 0.18 0.11
NDVI -0.43 0.18 1.00 -0.94 -0.72 0.72 -0.33 0.44 0.04 -0.15 0.58 -0.20
NDWI 0.35 -0.15 -0.94 1.00 0.87 -0.55 0.09 -0.46 -0.05 0.15 -0.43 0.20
PC1 0.02 -0.04 -0.72 0.87 1.00 -0.19 -0.26 -0.36 -0.05 0.09 -0.13 0.12
PC2 -0.68 0.24 0.72 -0.55 -0.19 1.00 -0.77 0.43 0.03 -0.20 0.65 -0.26
PSRI 0.74 -0.13 -0.33 0.09 -0.26 -0.77 1.00 -0.46 -0.02 0.23 -0.58 0.33
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REIP -0.61 -0.03 0.44 -0.46 -0.36 0.43 -0.46 1.00 0.03 -0.34 0.35 -0.47
TPI -0.07 -0.05 0.04 -0.05 -0.05 0.03 -0.02 0.03 1.00 -0.07 0.02 -0.12
TWI 0.33 0.06 -0.15 0.15 0.09 -0.20 0.23 -0.34 -0.07 1.00 -0.15 0.55
VH -0.48 0.18 0.58 -0.43 -0.13 0.65 -0.58 0.35 0.02 -0.15 1.00 -0.20
wetland 0.44 0.11 -0.20 0.20 0.12 -0.26 0.33 -0.47 -0.12 0.55 -0.20 1.00

Table 3: The relative importance of the 11
possible input variables in the boosted
regression tree wetland predictive model.
Variables chosen for predictive modelling
are seen in green.

Variable Relative importance
TWI 38.92
ARI 16.14
REIP 10.20
TPI 9.39
NDVI 5.26
NDPOL 5.03
NDWI 4.00
VH 3.55
PC1 3.01
PC2 2.68
PSRI 1.83

2.4 Wetland classification — machine learning algorithm

To classify the probability of wetland occurrence a machine learning algorithm was developed in R
Statistical Software (R Core Team, 2013). This algorithm uses a boosted regression tree modelling
approach (Elith et al., 2008). To build a model 1,900 random points were placed at a distance of at least 1
kilometer apart in known wetland and upland areas delineated by the 3x7s. Training points were not
placed in any locations within known human footprint features or areas with open water. The spatial
delineations of these features are taken from the ABMI's Human Footprint Inventory (ABMI, 2017) and the
ABMI’s Boreal surface water inventory (ABMI, 2017). The training wetland/upland data was taken from
the 3x7s. From these 1,900 points a data frame was built describing the values of the six input variables
and their corresponding binary wetland/upland information. This data frame was then put into the
boosted regression tree modelling function using a tree complexity of 5, learning rate of 0.005, and bag
fraction of 0.5 (Hird et al., 2017). This model output: responses for the four input variables, variables
importance, and Area Under the Receiver Operating Characteristic Curve (AUROC) value. The model was
then used to predict wetland probability given the six input variables. This process was repeated 40
times which generated 40 wetland probability grids. This was done to reduce statistical overfitting and
spatial auto-correlation (Parisien et al.,, 2011). The mean value of these 40 grids was used to produce the
final wetland probability grid. Wetlands were then classified as any value above of a probability threshold
of 0.35 (see Figure 7) resulting in a binary wetland(1)/upland(0) raster. The whole R script can be seen in
Script 1.

H* H

10
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#Boreal wetland probability

#Filename: "Boreal_WetlandProbability.R"

#Written and developed by Evan R. DeLancey - GIS Land Use Analyst
#Alberta Biodiversity Monitoring Institute, Nov, 14, 2017

#.
#

#.

#Load libraries
library(raster)
library(rgdal)
library(ggplot2)
library(dplyr)
library(caret)
library(snow)
library(rgeos)
library(RPyGeo)
library(dismo)
library(gbm)
library(ggthemes)

1 <- Sys.time()

#location of input rasters

location <- "J:/LandCover/ProbabilityofWetArea/Boreal/processed"
#location of land and wetland shapefiles

location.wetlandLand <- "J:/LandCover/Probabilityof WetArea/Boreal/training”
#location of outputs

outputs <- "J:/LandCover/ProbabilityofWetArea/Boreal/OUTPUTS"
#version of the outputs

OutNum <-"_v1"

#enter number of iteration of subsampling

iter <- 40

#set your python location

py.loc <- "C:/Python27/ArcGIS10.4"

#Set minimum distance of sample wetland points

MinDist <- 1000

#set location of a temporary raster dump
#this can take up 100-300BG per run but is deleted after
rasterOptions(maxmemory = 1e+09,tmpdir = "J:/RtmpRasterDump")

#DEFINE FUNCTIONS

HH H

#1) set up function to get random points give location of your land and wetland shapefile and the minimum distance
pts.gen <- function(directory, mindist){
#set up ArcGIS environment
w <- directory
env <- rpygeo.build.env(python.path = py.loc, workspace = directory, overwrite=1)
rpygeo.geoprocessor('CreateRandomPoints_management’, c(", "pts.shp", constraining_feature_class = "Boreal.shp”,
constraining_extent = ", number_of_points_or_field = 80000, minimum_allowed_distance = mindist), env = env, detect.required.extensions = T)
pts <- readOGR(w, "pts")
return(pts)
}

#2)multiplot function
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
library(grid)

# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)

numPlots = length(plots)

# If layout is NULL, then use ‘cols' to determine layout
if (is.null(layout)) {
# Make the panel
# ncol: Number of columns of plots
# nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))

}

if (numPlots==1) {
print(plots[[1]])

}else {

# Set up the page

11
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grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))

# Make each plot, in the correct location

for (i in T:numPlots) {
# Get the ij matrix positions of the regions that contain this subplot
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

print(plotsill, vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))

$oa

#Name vars and get min and max for response curves

#.
#
#.
#

#set input varibles

wetland.tifs <= c("ARL.tif", "NDPOL.tif", "NDWI.tif", "REIP tif', "TPL.tif", "TWI.tif")
wetland.colnames <- c("ARI", "NDPOL", "NDWI", "REIP", "TPI", "TWI", "wetland")
wetland.bricknames <- c("ARI", "NDPOL", "NDWI", "REIP", "TPI", "TWI")

fls <- wetland.tifs

setwd(location)

#extract min and max of all input rasters for response curves
r <- raster(fls[1])

min1 <- cellStats(r, 'min’)

max1 <- cellStats(r, 'max’)

r <- raster(fls[2])

min2 <- cellStats(r, 'min’)

max2 <- cellStats(r, 'max’)

r <- raster(fls[3])

min3 <- cellStats(r, 'min’)

max3 <- cellStats(r,'max)

r <- raster(fls[4])

min4 <- cellStats(r, 'min’)

max4 <- cellStats(r, 'max’)

r <- raster(fls[5])

min5 <- cellStats(r, 'min’)

max5 <- cellStats(r,'max’)

r <- raster(fls[6])

min6 <- cellStats(r, 'min’)

max6 <- cellStats(r, 'max’)

minval <- rbind(min1, min2, min3, min4, min5, min6)
maxval <- rbind(max1, max2, max3, max4, max5, max6)
mm.df <- data.frame(wetland.bricknames, minval, maxval)

#binary training raster

wetland <- raster("J:/LandCover/ProbabilityofWetArea/Boreal/training/wetland.tif")

HH H

#BUILD MODEL 1

HH H

#define fit AUC and dev
AUC <- vector()
dev <- vector()
pts.model <- pts.gen(location.wetlandLand, MinDist)
dat <- data.frame(row=1:length(pts.model))
for (i in 1:length(fls)){
r <- raster(fls[i])
ext <- extract(r,pts.model)
dat <- chind(dat,ext)
print(paste0("done " fls[i]))
}
ext <- extract(wetland, pts.model)
dat <- chind(dat,ext)
dat <- dat[,-1]
colnames(dat) <- wetland.colnames
dat <- na.omit(dat)
cor(dat)

12
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#defint model list

fit <- list()

#build model

fitl[1]] <- gbm.step(dat, 1:length(fls), length(fls)+1, family = "bernoulli’, tree.complexity = 5,
learning.rate = 0.005, bag.fraction = 0.5, silent = TRUE, warnings = FALSE)

df.importance <- data.frame(summary(fit[[1]]))

df.importance <- arrange(df.importance, var)

df.importance <- df.importancel,2]

#model stats

AUC[1] <- fit[[1]]$cv.statistics$discrimination.mean

dev[1] <- (fitl[[1]]$self.statistics$mean.null - fit$self.statistics$mean.resid) / fit$self statistics$mean.null

response.df <- data.frame(dummy=c(1:1001))
for (n in wetland.bricknames){
d <- plot.gbm(fit[[1]], i.var = n, return.grid=TRUE, type="response")
get.min.max <- filter(mm.df, wetland.bricknames == n)
mn <- get.min.maxl[,2]
mx <- get.min.max[,3]
xout <- seq(mn, mx, (mx-mn)/1000)
d <- approx(d[,1], d[.2], xout = xout, rule=2)
d <- as.data.frame(d)
response.df <- chind(response.df,d)

£ Sl

#BUILD MODEL ALL MODELS AND OUTPUT STATS

#.
#
#.

setwd(location)

for (i in 2:iter){
pts.model <- pts.gen(location.wetlandLand, MinDist)
dat <- data.frame(row=1:length(pts.model))
for (j in 1:length(fls)){
r <- raster(fls[j])
ext <- extract(r,pts.model)
dat <- chind(dat,ext)
}
ext <- extract(wetland, pts.model)
dat <- chind(dat,ext)
dat <- dat[-1]
colnames(dat) <- wetland.colnames
dat <- na.omit(dat)

#build model

fitllill <- gbm.step(dat, 1:length(fls), length(fls)+1, family = "bernoulli’, tree.complexity = 5,
learning.rate = 0.005, bag.fraction = 0.5, silent = TRUE, warnings = FALSE)

v.importance <- as.data.frame(summary(fit[[i]l))

v.importance <- arrange(v.importance, var)

v.importance <- v.importancel,2]

df.importance <- cbind(df.importance, v.importance)

for (n in wetland.bricknames){
d <- plot.gbm(fit[[i]], i.var = n, return.grid=TRUE, type="response")
get.min.max <- filter(mm.df, wetland.bricknames == n)
mn <- get.min.max[,2]
mx <- get.min.max[,3]
xout <- seg(mn, mx, (mx-mn)/1000)
d <- approx(dl[,1], d[.2], xout = xout, rule=2)
d <- as.data.frame(d)
response.df <- chind(response.df,d)

}

#model stats
AUCi] <- fit[[ill$cv.statistics$discrimination.mean
devli] <- (fit[[il|$self statistics$mean.null - fit$self.statistics$mean.resid) / fit$self.statistics$mean.null

print(paste0('done building model *, i))
}

importance <- rowMeans(df.importance)
imp.names <- c("ARI", "NDPOL", "NDWI", "REIP", "TPI", "TWI")
importance <- data.frame(imp.names, importance)

13
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3

#GENERATE RESPONSE CURVES AND MODEL STATS

$* 3

response.df <- response.df[-1]
response.df.x <- response.df[,seq(1,length(response.df),2)]
response.df.x <- response.df.x[,1:length(wetland.bricknames)]
response.df.y <- response.dff,seq(2,length(response.df),2)]
for (i in 1:length(wetland.bricknames)){
varname <- wetland.bricknames]i]
collumns <- seq(i, length(response.df.y), length(wetland.bricknames))
yvals <- response.df.y|.collumns]
xvals <- response.df.x[,i]
yvals.mean <- rowMeans(yvals)
yvals.std <- apply(yvals,1,sd)
yvals.neg.std <- yvals.mean - yvals.std
yvals.add.std <- yvals.mean + yvals.std
yvals.df <- chind(xvals, yvals.mean, yvals.neg.std, yvals.add.std)
yvals.df <- as.data.frame(yvals.df)
if(i>0)
xlim <- ¢(min(xvals), max(xvals))
} else{
xlim <- ¢(min(xvals), 1200)
}
g <- ggplot(yvals.df, aes(x=xvals, y=yvals.mean)) +
theme_minimal()+
geom_ribbon(aes(ymin=yvals.neg.std, ymax=yvals.add.std), fill="#6baed6", alpha=0.35) +
geom_line(colour="#08519c", size=1.8) +
xlab(varname) + ylab('predicted probability") + xlim(xlim) +
theme(axis.title.x = element_text(size=22), axis.title.y = element_text(size=20),axis.text = element_text(size=16))
assign(paste0(varname,”.plot"), g)

}

#output model stats

setwd(outputs)

AUC <- mean(AUC)

dev <- mean(dev)

stats <- chind(AUC,dev)

write.csv(stats, paste0(‘wetlandModelStats’, ".csv"), row.names=FALSE)
tiff(paste0("wetlandResponseCurves’, " iff"), width = 1200, height = 1000)
multiplot(ARI.plot, NDPOL.plot, NDWI.plot, REIP.plot, TPI.plot, TWI.plot, cols=2)
dev.off()

tiff(paste0('wetlandVarimportance', "tiff"), width = 1000, height = 700)
ggplot(importance,aes(x=reorder(imp.names,-importance),y=importance)) + geom_bar(stat="identity’, show.legend=FALSE, fill= "grey60") + theme_minimal() +
theme(axis.title.x = element_text(size=24), axis.title.y = element_text(size=24),axis.text = element_text(size=22), legend.text = element_text(size=20), legend.title =
element_text(size=22)) +
labs(x = "Variables") + labs(y = "Importance")
dev.off()
#

4.
#

#SECTION 2 PREDICT WETLAND PROBABILITY BY TILE

#LOOP THROUGH PREDICTION OF RASTERS BASED ON MODEL FITS

H* H

PUs <- readOGR("J:/LandCover/CurrentSurfaceWater/Boreal", "Boreal _PUs")
for (i in 1:length(PUs)){

1 <- Sys.time()

#build raster brick
setwd(location)
fls <- wetland.tifs
PU <- PUsli]
#build raster brick
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r1 <- raster(fls[1])
r1 <- crop(r1, PU)
print("done cropping1")

r2 <- raster(fls[2])
12 <- crop(r2, PU)

r3 <- raster(fls[3])
13 <- crop(r3, PU)

r4 <- raster(fls[4])
r4 <- crop(r4, PU)

r5 <- raster(fls[5])
r5 <- crop(r5, PU)

r6 <- raster(fls[6])
16 <- crop(r6, PU)

r.b <- brick(r1,r2,r3,r4, r5, r6)
names(r.b) <- wetland.bricknames

#predict fit[[1]]

beginCluster(20)

r.b.p <- clusterR(r.b, raster::predict, args = list(model = fit[[1]], type = "response’, n.trees = fit[[1]]$gbm.call$best.trees))
endCluster()

plot(r.b.p)

#START PREDICTION OF RASTER STACK
for (n in 2:length(fit)){
beginCluster(20)
prediction <- clusterR(r.b, raster::predict, args = list(model = fit[[n]], type = "response’, n.trees = fit[[n]]$gbm.call$best.trees))
endCluster()
r.b.p <- stack(r.b.p, prediction)
print(paste0('Done model prediction *, n))

}
wet <- calc(r.b.p, fun = mean)

#Save wetland prediction rasters
setwd(outputs)
writeRaster(wet, paste0('WetlandProbability", i, ".tif"), datatype= "FLT4S")

12 <- Sys.time()
t.diff <- difftime(t2,t1, units="hours")
print(paste0('Done predicting PU ", i, " it took ', round(t.diff, 2), " hours"))

*

12 <- Sys.time()
t.diff <- difftime(tt2,tt1, units="hours")
print(paste0('total script took ', round(t.diff, 2), " hours"))

Script 1: R machine learning algorithm for classifying wetland occurrence in the boreal region.

2.5 Cross validation accuracy assessment

An independent cross validation accuracy assessment of the binary wetland/upland layers was
completed by generating 200,000 points in 3x7 areas devoid of human footprint or surface water. Values
from the 3x7 training data and the modeled wetland occurrence were then extracted for each point. With
this data a traditional accuracy was calculated along with a confusion matrix, and a kappa statistic.

2.6 Additional processing

Once wetland probability was predicted across the boreal, areas with surface water (ABMI Boreal surface
water inventory, 2017) were given a wetland probability value of 1 while areas with human footprint types
seen in Table 4 (ABMI Human Footprint Inventory (HFI) 2014, 2017) were given a wetland probability
value of 0. The final probability raster was converted into a binary wetland/upland grid. Another
smoothed version of this binary grid was produced by using a 5x5 pixel majority filter.
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Table 4: List of HFI 2014 sublayers
used to assign a wetland probability of
0.

Human Footprint Inventory 2014
sublayer

Borrow Pits, Sumps, Dugouts, and
Lagoons

Roads

Railways

Canals

Verge

Mine sites

Industrial sites

Well sites

Landfill

Other veg surfaces

Wind generation facilities

High density livestock operation
Residential areas

Cultivation

3 Results

The results of the BRT model show that TWI was the most important input variable (Figure 4). The two
vegetation indices (ARI and REIP) proved to be the second and third most important variables. TPI, NDWI,
and NDPOL had the least influence on the model but they all contributed over 7.5% to the model building.
Figure 5 shows the mean partial dependence response curves for all six input variables and the standard
deviation around the mean of the 40 models.

40
30
10 I
0
TWI ARI

Figure 4: BRT model variable importance of all six input variables.

Importance
[\~
o

REIP TPI NDWI NDPOL
Variables
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Figure 5: Mean partial dependence response curves of all six input variables for the wetland model. Predicted

probability is the estimated probability of wetland occurrence at the given input value with all other variables held
at their mean.

Figure 6 shows the model predicted across the boreal landscape. Blues represent high wetland
probability and browns represent high upland probability. Low probabilities of wetland occurrence in the
south are seen mainly due to heavy cultivation. Open water is taken from the ABMI boreal surface water
inventory and given a value of 1 in this data set.
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Figure 6: Wetland probability for the boreal region. Wetlands make up 35.6% of the study area while
uplands and open water make up 59.6 and 4.8% respectively.
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Figure 7 shows different error rates and kappa statistics for different probability thresholds. The lowest
error rate (0.166) and highest kappa statistic (0.667) occur at a probability threshold of 0.35. Therefore,
when completing a binary wetland upland classification the 0.35 probability was used to differentiate the
classes. Table 5 and 6 show the results of the cross validation accuracy assessment using this 0.35
threshold as the distinction between wetland and upland. The overall accuracy to the 3x7s was seen to
be 83.4%, the kappa statistic was 0.667, and the AUROC of the BRT model was 0.910.

0.6

2
=
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=
0.4
%]
'] =False wetland rate
o =False upland rate
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© =Error rate
X
=
D
=
©
Xo.2
0.0
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Figure 7: Error rate and kappa statistic at different probability thresholds. A wetland
probability of 0.35 results in the lowest error rate and highest kappa statistic when
classifying wetlands.

Table 5: Confusion matrix for the cross validation
accuracy assessment to the3x7s. Overall accuracy
shown in the bottom right in bold.

Upland Wetland  User Accuracy

Upland 81,140 14,433 0.849
Wetland 18,860 85,566 0.819
Producer accuracy 0.811 0.856 0.834

Table 6: Kappa statistic and AUROC of model and results
Kappa statistics of 3x7 cross validation 0.667
AUROC of boosted regression tree model 0.91
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4 Conclusion

This document presents an automated framework for predicting wetland occurrence across large areas.
The results show that the modelling framework can predict wetland occurrence across the entire boreal
with an accuracy of 83.4%. Due to the automated nature of this framework and its use of cloud
computing technologies, the process for predicting wetland occurrence takes about 4-6 weeks.
Therefore it is now possible to produce consistent, repeated updates to wetland inventories for large
areas of Alberta.
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