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1 Introduction 
The ABMI Geospatial Centre aims to provide spatially comprehensive and accurate Alberta-wide datasets 

to support the needs of the ABMI and other stakeholders.  The primary dataset used for hydrography 

information in Alberta is the Government of Alberta Base Features Hydrography Polygons (GoA 

hydropolys) (Alberta Environment and Parks, formerly ESRD, 2004).  While this dataset is comprehensive, 

it is older and may need updates in certain areas.  Large scale government projects such as the 

Biodiversity Management Framework need a consistent up-to-date hydrographic dataset for calculations 

of their biodiversity indicators.  Newly available satellite data in the form of Sentinel-1 and -2 (Copernicus, 

2014) provide a great option for higher temporal (average six day revisit), and higher spatial resolution 

(10m) mapping of waterbodies in Alberta.  Additionally, Google Earth Engine (GEE) provides a cloud 

based platform for quick and easy access and processing of Sentinel-1 and -2 data.  These data can be 

utilized to support and update hydrographic spatial layers such as the GoA hydropolys. 

2 Surface water classification model 
2.1 Methods 

2.1.1 Study area 
The study area primarily consists of the Boreal Natural Region of Alberta with small parts of the foothills, 

parkland, and Canadian Shield included.  This study area makes up about 60% (397, 958 km2) of the total 

area of Alberta. 
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Figure 1: The spatial delineation of the boreal study 

region. 

 

2.1.2 Data 
Sentinel-1 and -2 (S1 and S2) (Copernicus [2016, 2017]) data was used to classify surface water in the 

boreal region.  All data were acquired, processed, and downloaded through Google Earth Engine (GEE) 

(Google Earth Engine Team, 2015).  GEE stores S1 (SAR imagery) ground range detected scenes which 

have been pre-processed with the Sentinel-1 Toolbox (Sentinel Application Platform – Sentinel-1 

Toolbox).  These pre-processing steps include thermal noise removal, radiometric calibration, and terrain 

correction (Google Earth Engine Team, 2015).  S1 images were further processes in the GEE environment 

by performing an incidence angle correction (Gauthier et al., 1998) and smoothing with a 3x3 Sigma Lee 

filter (Lee et al., 2009) (credit to Guido Lemoine for GEE code).  S2 top of atmosphere data was acquired 

through GEE.   

All S1 images intersecting with the boreal region during the 2016 – 2017 spring/summer months (May-

September) were used.  Pixel vales were not used were removed from images if wind speed for the day of 

acquisition was over 12 km/h.  Daily wind speed data was taken from the NCEP Climate Forecast System 

Version 2 (Saha et al., 2014).  Additionally, the normalized difference of polarization (NDPOL) was 

calculated for each image (see Table 1 for equation).  The final VH and NDPOL grids were generated by 
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taking the mean value of the time series pixel stack.  A total of 478 S1 images were used in the 

calculation of the VH and NDPOL variables. 

The S2 (optical imagery) images intersecting with the boreal region during 2016-2017 leaf-on season 

(May 15 – August 31) were used to generate the Normalized Difference Water Index (NDWI) and Principal 

component 1 (PC1). Clouds, shadows, snow, and ice were removed with the QA60 band (a quality control 

band which flags snow, ice, and clouds), and further cloud masking was done using bands 1 (aerosols) 

and 11 (cloud identification). PC1 was generated with the 10m S2 bands (B2, B3, B4, and B8) in a 

principal component analysis.  The merged S2 data was generated using a median composting algorithm 

where the median time series value for each pixel was selected as the most representative pixel.  A total 

of 3,148 S2 images were used in the calculation of NDWI and PC1.  All the input variables can be seen in 

Figure 2 and the equations and description can be seen in Table 1.  

Training data was taken from the Alberta Biodiversity Monitoring Institute 3x7km Land Cover Photoplots 

(hereafter 3x7s) (ABMI, 2016).  These photoplots are derived from high resolution 3D image interpretation 

and give detailed attribution of land cover information.  They are typically very accurate with less than 1% 

of features possessing errors (ABMI, 2016). 

 

Table 1: List of input variables used in the surface water classification 

Variable Data source Equation Description 

VH  Sentinel-1 - Vertical polarization sending horizontal 

polarization receiving SAR backscatter in 

decibels. 

NDWI Sentinel-2 (𝐵𝑎𝑛𝑑 3 −  𝐵𝑎𝑛𝑑 8)

(𝐵𝑎𝑛𝑑 3 +  𝐵𝑎𝑛𝑑 8)
 

Normalized difference Water Index from 

(Mcfeeters, 1996) 

NDPOL Sentinel-1 (𝑉𝐻 −  𝑉𝑉)

(𝑉𝐻 +  𝑉𝑉)
 

Normalized Difference of Polarization. 

PC1 Sentinel-2 - The first principal component of variation of 

Bands 2, 3, 4, and 8 of Sentinel-2 data 
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Figure 2: The four input raster layers used for the Boreal surface water 

classification.  Two raster layers are generated from Sentinel-1 (S-1) data and two 

are generated from Sentinel-2 (S-2) data. 

 

 

2.1.3 Data exploration 
Figures 3 – 6 show the distribution of values for the four input variables for water and land classes.  All 

variables show a strong distinction between water and land.  Figure 7 shows the obvious clustering of 

water and land points when VH and NDWI are plotted against each other.  As expected these variables 

are highly cross correlated and also highly correlated to water (Table 2).  VH and NDWI show the highest 

correlation to water presence and are expected to be the most important variables in the water 

classification (Table 2). 
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Figure 3: Distribution of VH values for water and land 

classes. 

Figure 4: Distribution of NDWI values for water and land 

classes. 

  

Figure 5: Distribution of NDPOL values for water and 

land classes. 
Figure 6: Distribution of PC1 values for water and land 

classes. 
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Figure 7: VH and NDWI values plotted for 100,000 random points colored 

by whether the point falls in water or land.  

 

Table 2: Cross correlation between four input variables and a binary 
water/land grid. 

 VH NDWI NDPOL PC1 water 

VH 1.00 -0.96 0.85 -0.89 -0.93 

NDWI -0.96 1.00 -0.84 0.95 0.92 

NDPOL 0.85 -0.84 1.00 -0.79 -0.82 

PC1 -0.89 0.95 -0.79 1.00 0.88 

water -0.93 0.92 -0.82 0.88 1.00 

 

2.1.4 Water classification - machine learning algorithm 
To classify water a machine learning algorithm was developed in R Statistical Software (R Core Team, 

2013).  This algorithm uses a boosted regression tree (BRT) modelling approach (Elith et al., 2008).  To 

build a model, 494 random points were placed at a distance of at least 1.5 kilometers apart in known land 

areas devoid of human footprint and 494 random points were placed 150 meters apart in known water 

areas.  Training water/land was taken from the 3x7s.  Using these 988 points a data frame was built 

describing the values of the four input variables and their binary water/land information.  This data frame 

was then put into the boosted regression tree modelling function using a tree complexity of 5, learning 

rate of 0.005, and bag fraction of 0.5 as seen in Hird et al. (2017).  This model output: responses for the 

four input variables, variables importance, and Area Under the Receiver Operating Characteristic Curve 

(AUROC) value.  The model was then used to predict the probability of water given the four input 

variables.  This process was repeated 40 times which generated 40 probability of water grids.  This was 

done to reduce statistical overfitting and spatial auto-correlation (Parisien et al., 2011).  The mean value 

of these 40 grids was used to produce the final probability of water grid.  Water was then classified as 

any value above 0.76 resulting in a binary water(1)/land(0) raster.  The whole R script can be seen in 

Script 1. 
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################################################################### 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
#Boreal Region Waterbody Classification 
#Filename: "Boreal_WaterBodyClassification.R" 
#Written and developed by Evan DeLancey - GIS Land Use Analyst 
#Alberta Biodiversity Monitoring Institute, Sept, 7, 2017 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
################################################################### 
 
#Load libraries 
library(raster) 
library(rgdal) 
library(ggplot2) 
library(dplyr) 
library(caret) 
library(snow) 
library(rgeos) 
library(RPyGeo) 
library(dismo) 
library(gbm) 
library(ggthemes) 
 
tt1 <- Sys.time() 
 
#location of input rasters 
location <- "J:/LandCover/CurrentSurfaceWater/Boreal/processed" 
#location of land and water shapefiles 
location.WaterLand <- "J:/LandCover/CurrentSurfaceWater/Boreal/training" 
#location of outputs 
outputs <- "J:/LandCover/CurrentSurfaceWater/Boreal/OUTPUTS" 
#version of the outputs 
OutNum <- "_v1" 
#enter number of iteration of subsampling 
iter <- 40 
#set your python location 
py.loc <- "C:/Python27/ArcGIS10.4" 
#Set minimum distance of sample water points 
MinDist <- 1500 
 
#set location of a temporary raster dump 
#this can take up 100-300BG per run but is deleted after 
rasterOptions(maxmemory = 1e+09,tmpdir = "J:/RtmpRasterDump") 
 
 
 
#DEFINE FUNCTIONS 
################################################################### 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
 
#1) set up function to get random points give location of your land and water shapefile and the minimum distance 
pts.gen <- function(directory, mindist){ 
    #set up ArcGIS environment 
    w <- directory 
    env <- rpygeo.build.env(python.path = py.loc, workspace = directory, overwrite=1) 
    rpygeo.geoprocessor("CreateRandomPoints_management", c("", "ptsLand.shp", constraining_feature_class = "LandDissolve.shp",  
        constraining_extent = "", number_of_points_or_field = 20000, minimum_allowed_distance = mindist), env = env, detect.required.extensions = T) 
    ptsLand <- readOGR(w, "ptsLand") 
    npts <- length(ptsLand) 
    mdist <- mindist/10 
    rpygeo.geoprocessor("CreateRandomPoints_management", c("", "ptsWater", constraining_feature_class = "LakesDissolve.shp",  
        constraining_extent = "", number_of_points_or_field = npts, minimum_allowed_distance = mdist), env = env, detect.required.extensions = T) 
    ptsWater <- readOGR(w, "ptsWater") 
    pts.model <- rbind(ptsLand, ptsWater) 
    return(pts.model) 
} 
 
#2)multiplot function 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
  library(grid) 
 
  # Make a list from the ... arguments and plotlist 
  plots <- c(list(...), plotlist) 
 
  numPlots = length(plots) 
 
  # If layout is NULL, then use 'cols' to determine layout 
  if (is.null(layout)) { 
    # Make the panel 
    # ncol: Number of columns of plots 
    # nrow: Number of rows needed, calculated from # of cols 
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                    ncol = cols, nrow = ceiling(numPlots/cols)) 
  } 
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 if (numPlots==1) { 
    print(plots[[1]]) 
 
  } else { 
    # Set up the page 
    grid.newpage() 
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 
 
    # Make each plot, in the correct location 
    for (i in 1:numPlots) { 
      # Get the i,j matrix positions of the regions that contain this subplot 
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
 
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                      layout.pos.col = matchidx$col)) 
    } 
  } 
} 
#---------------------------------------------------------------- 
#---------------------------------------------------------------- 
################################################################# 
 
 
 
#Name vars and get min and max for response curves 
################################################################### 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
#set input varibles 
water.tifs <- c("VH.tif", "NDWI.tif", "NDPOL.tif", "PC1.tif") 
water.colnames <- c("VH", "NDWI", "NDPOL", "PC1", "water") 
water.bricknames <- c("VH", "NDWI", "NDPOL", "PC1") 
fls <- water.tifs 
 
setwd(location) 
#extract min and max of all input rasters for response curves 
r <- raster(fls[1]) 
min1 <- cellStats(r, 'min') 
max1 <- cellStats(r, 'max') 
r <- raster(fls[2]) 
min2 <- cellStats(r, 'min') 
max2 <- cellStats(r, 'max') 
r <- raster(fls[3]) 
min3 <- cellStats(r, 'min') 
max3 <- cellStats(r, 'max') 
r <- raster(fls[4]) 
min4 <- cellStats(r, 'min') 
max4 <- cellStats(r, 'max') 
minval <- rbind(min1, min2, min3, min4) 
maxval <- rbind(max1, max2, max3, max4) 
mm.df <- data.frame(water.bricknames, minval, maxval) 
 
#binary training raster 
water <- raster("water.tif") 
#---------------------------------------------------------------- 
#---------------------------------------------------------------- 
################################################################# 
 
 
 
#BUILD MODEL 1 
################################################################### 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
pts.model <- pts.gen(location.WaterLand, MinDist) 
dat <- data.frame(row=1:length(pts.model)) 
for (i in 1:length(fls)){ 
    r <- raster(fls[i]) 
    ext <- extract(r,pts.model) 
    dat <- cbind(dat,ext) 
    print(paste0("done ",fls[i])) 
} 
ext <- extract(water, pts.model) 
dat <- cbind(dat,ext) 
dat <- dat[,-1] 
colnames(dat) <- water.colnames 
dat <- na.omit(dat) 
cor(dat) 
 
#defint model list 
fit <- list() 
#build model 
fit[[1]] <- gbm.step(dat, 1:length(fls), length(fls)+1, family = "bernoulli", tree.complexity = 5, 
    learning.rate = 0.005, bag.fraction = 0.5, silent = TRUE, warnings = FALSE) 
df.importance <- data.frame(summary(fit[[1]])) 
df.importance <- arrange(df.importance, var) 
df.importance <- df.importance[,2] 
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response.df <- data.frame(dummy=c(1:1001)) 
for (n in water.bricknames){ 
    d <- plot.gbm(fit[[1]], i.var = n, return.grid=TRUE, type="response") 
    get.min.max <- filter(mm.df, water.bricknames == n) 
    mn <- get.min.max[,2] 
    mx <- get.min.max[,3] 
    xout <- seq(mn, mx, (mx-mn)/1000) 
    d <- approx(d[,1], d[,2], xout = xout, rule=2) 
    d <- as.data.frame(d) 
    response.df <- cbind(response.df,d) 
} 
#---------------------------------------------------------------- 
#---------------------------------------------------------------- 
################################################################# 
 
 
 
 
 
 
#BUILD MODEL ALL MODELS AND OUTPUT STATS 
################################################################### 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
setwd(location) 
 
#define fit AUC and dev 
AUC <- vector() 
dev <- vector() 
for (i in 2:iter){ 
    pts.model <- pts.gen(location.WaterLand, MinDist) 
    dat <- data.frame(row=1:length(pts.model)) 
    for (j in 1:length(fls)){ 
        r <- raster(fls[j]) 
        ext <- extract(r,pts.model) 
        dat <- cbind(dat,ext) 
    } 
    ext <- extract(water, pts.model) 
    dat <- cbind(dat,ext) 
    dat <- dat[,-1] 
    colnames(dat) <- water.colnames 
    dat <- na.omit(dat) 
     
    #build model 
    fit[[i]] <- gbm.step(dat, 1:length(fls), length(fls)+1, family = "bernoulli", tree.complexity = 5, 
        learning.rate = 0.005, bag.fraction = 0.5, silent = TRUE, warnings = FALSE) 
    v.importance <- as.data.frame(summary(fit[[i]])) 
    v.importance <- arrange(v.importance, var) 
    v.importance <- v.importance[,2] 
    df.importance <- cbind(df.importance, v.importance) 
     
    for (n in water.bricknames){ 
        d <- plot.gbm(fit[[i]], i.var = n, return.grid=TRUE, type="response") 
        get.min.max <- filter(mm.df, water.bricknames == n) 
        mn <- get.min.max[,2] 
        mx <- get.min.max[,3] 
        xout <- seq(mn, mx, (mx-mn)/1000) 
        d <- approx(d[,1], d[,2], xout = xout, rule=2) 
        d <- as.data.frame(d) 
        response.df <- cbind(response.df,d) 
    } 
     
    #model stats 
    AUC[i] <- fit[[i]]$cv.statistics$discrimination.mean 
    dev[i] <- (fit[[i]]$self.statistics$mean.null - fit$self.statistics$mean.resid) / fit$self.statistics$mean.null 
     
    print(paste0("done building model ", i)) 
} 
 
importance <- rowMeans(df.importance) 
imp.names <- c("VH", "NDWI", "NDPOL", "PC1") 
importance <- data.frame(imp.names, importance) 
#---------------------------------------------------------------- 
#---------------------------------------------------------------- 
################################################################# 
 
 
 
 
 
#GENERATE RESPONSE CURVES AND MODEL STATS 
################################################################### 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
response.df <- response.df[,-1] 
response.df.x <- response.df[,seq(1,length(response.df),2)]  
response.df.x <- response.df.x[,1:length(water.bricknames)] 
response.df.y <- response.df[,seq(2,length(response.df),2)]  
for (i in 1:length(water.bricknames)){ 
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    varname <- water.bricknames[i] 
    collumns <- seq(i, length(response.df.y), length(water.bricknames))  
    yvals <- response.df.y[,collumns] 
    xvals <- response.df.x[,i] 
    yvals.mean <- rowMeans(yvals) 
    yvals.std <- apply(yvals,1,sd) 
    yvals.neg.std <- yvals.mean - yvals.std 
    yvals.add.std <- yvals.mean + yvals.std 
    yvals.df <- cbind(xvals, yvals.mean, yvals.neg.std, yvals.add.std) 
    yvals.df <- as.data.frame(yvals.df) 
    if(i>0){ 
        xlim <- c(min(xvals), max(xvals)) 
    } else{ 
        xlim <- c(min(xvals), 1200) 
    } 
    g <- ggplot(yvals.df, aes(x=xvals, y=yvals.mean)) +  
        theme_minimal()+  
        geom_ribbon(aes(ymin=yvals.neg.std, ymax=yvals.add.std), fill="gray80") + 
        geom_line(colour="limegreen", size=1.6) + 
        xlab(varname) + ylab("predicted probability") + xlim(xlim) + 
        theme(axis.title.x = element_text(size=22), axis.title.y = element_text(size=20),axis.text = element_text(size=16)) 
    assign(paste0(varname,".plot"), g) 
} 
 
#output model stats 
setwd(outputs) 
AUC <- mean(AUC) 
dev <- mean(dev) 
stats <- cbind(AUC,dev) 
write.csv(stats, paste0("WaterModelStats", OutNum, ".csv"), row.names=FALSE) 
 
png(paste0("WaterResponseCurves", OutNum, ".png"), width = 1300, height = 1100) 
multiplot(VH.plot, NDWI.plot, NDPOL.plot, PC1.plot, cols=2) 
dev.off() 
 
png(paste0("WaterVarImportance", OutNum, ".png"), width = 1000, height = 900) 
ggplot(importance,aes(x=reorder(imp.names,-importance),y=importance, fill=importance)) + geom_bar(stat="identity") + theme_minimal() + 
    theme(axis.title.x = element_text(size=24), axis.title.y = element_text(size=24),axis.text = element_text(size=22), legend.text = element_text(size=20), legend.title = 
element_text(size=22)) +  
    labs(x = "Variables") + labs(y = "Importance" )  
dev.off() 
#---------------------------------------------------------------- 
#---------------------------------------------------------------- 
################################################################# 
 
 
 
################################################################### 
#SECTION 2 PREDICT WATERBODIES BY NTS TILE 
################################################################### 
 
#LOOP THROUGH PREDICTION OF RASTERS BASED ON MODEL FITS 
################################################################### 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
 
PUs <- readOGR("J:/LandCover/CurrentSurfaceWater/Boreal", "Boreal_PUs")  
for (i in 1:length(Pus)){ 
 
    t1 <- Sys.time() 
     
    #build raster brick 
    setwd(location) 
    fls <- water.tifs 
    PU <- PUs[i,] 
    #build raster brick 
    r1 <- raster(fls[1]) 
    r1 <- crop(r1, PU) 
 
    r2 <- raster(fls[2]) 
    r2 <- crop(r2, PU) 
 
    r3 <- raster(fls[3]) 
    r3 <- crop(r3, PU) 
 
    r4 <- raster(fls[4]) 
    r4 <- crop(r4, PU) 
 
     
    r.b <- brick(r1,r2,r3,r4) 
    names(r.b) <- water.bricknames 
     
    #predict fit[[1]] 
    beginCluster(15) 
    r.b.p <- clusterR(r.b, raster::predict, args = list(model = fit[[1]], type = "response", n.trees = fit[[1]]$gbm.call$best.trees)) 
    endCluster() 
    plot(r.b.p) 
     
    #START PREDICTION OF RASTER STACK 
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    for (n in 2:length(fit)){ 
        beginCluster(15) 
        prediction <- clusterR(r.b, raster::predict, args = list(model = fit[[n]], type = "response", n.trees = fit[[n]]$gbm.call$best.trees)) 
        endCluster() 
        r.b.p <- stack(r.b.p, prediction) 
        print(paste0("Done model prediction ", n)) 
    } 
     
    wet <- calc(r.b.p, fun = mean) 
     
    #Save water prediction rasters 
    setwd(outputs) 
    writeRaster(wet, paste0("WaterProbability", i, "_", OutNum, ".tif"), datatype= "FLT4S") 
     
    t2 <- Sys.time() 
    t.diff <- difftime(t2,t1, units="hours") 
    print(paste0("Done predicting PU ", i, " it took ", round(t.diff, 2), " hours")) 
     
} 
#------------------------------------------------------------------ 
#------------------------------------------------------------------ 
#################################################################### 
tt2 <- Sys.time() 
t.diff <- difftime(tt2,tt1, units="hours") 
print(paste0("total script took ", round(t.diff, 2), " hours"))  

 

Script 1: R machine learning algorithm for classifying water in the boreal region. 

 

2.1.5 Cross validation accuracy assessment 
An independent cross validation accuracy assessment of the binary water/land layer was completed by 

generating 200,000 points in 3x7 areas devoid of human footprint.  Values from the 3x7 training data and 

the modeled surface water were then extracted for each point.  With this data frame, a traditional 

accuracy was calculated along with a confusion matrix, and a kappa statistic. 

2.2 Results 
The results of the BRT model show that VH was the most important input variable in the model followed 

by PC1 and NDWI (Figure 8).  NDPOL was seen to have minimal influence on the model (Figure 8).  The 

response curves showed expected trends with low VH signal having high probabilities of being water, 

high NDWI and PC1 values having high probability of water (Figure 9). 
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Figure 8: Importance of each of the response variables in the water classification BRT model. 

 

 

 

 



Boreal Surface water inventory - technical documentation; ABMI GC 
 

15 
 

 
Figure 9: Average partial dependence response curves for the four input variables.  Predicted probability 
represents the probability of a pixel being water. 
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Figure 10: Two way partial dependence plots with VH and NDWI 
variables. 

 

Figure 11a shows the results of the model prediction on the study area.  It does a good job of 

distinguishing waterbodies and land.  The major areas of concern are recent fires which show distinct 

areas of higher probability of water.  Figure 11b shows the land and water classes across the landscape 

using a threshold of 0.76 which was deemed as the threshold with the best accuracy.  This binary 

land/water results is seen to have a 99.5% accuracy to the training data and a 0.92 kappa statistic when 

compared to the 3x7 Photoplot data.  Again, most false water areas occur in areas of recent high severity 

burn fires.  The full list of results from the cross validation accuracy assessment can be seen in Table 2 

and 3. 
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Figure 11: a) Probability of water for the boreal region with deep blue being the highest probability of water and 
light blue being low probability. b) the probability of water classified into water and land based on a 0.76 threshold. 

 

Table 2: Confusion matric for the cross validation accuracy 
assessment to the 3x7s. Overall accuracy shown in the bottom right 
in bold. 

 Land Water User accuracy 

Land 81519 272 0.997 

Water 198 4290 0.956 

Producer accuracy 0.998 0.940 0.995 

 

Table 3: Kappa statistic and AUROC of model and results 

Kappa statistics cross validation accuracy assessment 0.945 

AUROC of boosted regression tree model 0.98 

 

2 Surface water quality control and cleaning 
2.1 Methods 
Once the binary water/land raster was generated it was turned into a polygon feature which was cleaned 

and quality checked (QC).  The polygon layers were QCed with 1.5m resolution SPOT 2016 RBG data at a 

1:30,000 scale.  Polygons were marked as “CORRECT”, “INACCURATE”, or “INCORECT”.  After double 

checking the “INCORECT” polygons, they were subsequently removed from the surface water inventory.  
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Some waterbodies were missed due the masking of the HFI cultivation layer.  In cases where obvious 

waterbodies were missed we digitized these boundaries using the SPOT 2016 imagery.  Additionally, 

some algal blooms caused holes in the middle of lakes, which were filled in with a digitized polygon if 

noticed in the cleaning and auditing processes.  Finally, any polygon with an area less than 0.01 ha (1 

10x10m pixel) was removed as this is likely a sliver polygon created by the masking of HF features. 

2.2 Results 
Most of the errors were either small polygons (2x2 or 1x1 10m pixels), areas of recent fires, or algal 

blooms.  The cleaning process improved the overall accuracy by 0.13% and improved the kappa statistic 

by 0.007 (Table 4 and 5). 

Table 4: Confusion matrix for the cross validation accuracy 
assessment to the 3x7 training data for the cleaned surface water 
polygons. Overall accuracy shown in the bottom right in bold. 

 Land Water User accuracy 

Land 93797 275 0.997 

Water 136 4296 0.969 

Producer accuracy 0.999 0.939 0.996 

 

Table 5: Kappa statistic of cleaned polygons 

Kappa statistics of cross validation accuracy 
assessment 

0.952 

 

About 26% of the errors were found to be in the Zama Lake region which looks to be undergoing rapid 

changes (e.g., possible draining).  It is likely that the modeled results contain more accurate areas than 

the training data as the modeled results are the most up to date.  It appears that Zama Lake was mostly 

full when the photo plots were completed.  The overall accuracy is therefore likely closer to 99.7%. 

3 Field attribution 
3.1 Naming 
The surface water polygons were spatially joined to named waterbodies from the Government of Alberta 

Base Features Hydrography Polygons (Alberta Environment and Parks, formerly ESRD, 2004).  If a surface 

water polygon intersected with a named lake that polygon would take on the name.  The Surface water 

polygons were then dissolved by the NAME field so named features such as large rivers would be one 

single feature. 

3.2 Temporal attribution 
The surface water polygons were used to extract the mean Hydro Temporal Variability (HTV) value for the 

polygons.  The HTV dataset (DeLancey et al., 2018) is a raster layer which summarizes the percent of 

time water is seen in a given 10x10m pixel.  This can give an idea of whether the polygon is permanent or 

recurring.  HTV field values of 0-60 will usually correspond with recurring lakes while 61-100 will often be 

permanent lakes.  Based on the HTV field, a “PERMANENT” field was added with “YES” being HTV values 

from 61-100 and “NO” being HTV values of 0-60.  To get an idea of the dynamic regions of lakes the HTV 

layer can underlay the surface water polygons as seen in Figure 12. 
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Figure 12: The surface water polygons (red) underlain by the HTV layer.  The light blue outer 
regions of the lake represent the dynamic regions of the lake while the dark blue represents the 
permanent region.  The light blue area can represent the normal seasonal fluctuation in lakes or 
the long term trend in water loss/gain. 

 

3.3 Depth and volume attribution 
For lakes over 10ha, average lake depth (field “AvgDepth”) and volume (field “Volume”) were taken from 

the WWF HydroSHEDS HydroLAKES version 1.0 layer (Messager et al., 2016).  The HydroLAKES polygons 

with volume and depth attribution were spatially joined to the Boreal surface water polygons.  The results 

of this join can be seen in Figure 13.  For more information on how lake depth and volume were 

calculated refer to Messager et al. (2016). 
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Figure 13: Average lake depth for lakes in the Canadian Shield Region of Alberta.  Darker blues indicate greater 
average depth. 
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